Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương

Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn các học sinh có học lực tốt để học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương bao gồm 5 bài toán dạng tự luận. Đề thi chỉ có 1 trang, học sinh được 120 phút để làm bài thi và đề thi có lời giải chi tiết. Một số câu hỏi trong đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương: 1. Cho hai đường thẳng (d1): y = 2x - 5 và (d2): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. 2. Một xưởng may cần may xong 360 bộ quần áo trong thời gian quy định. Tuy nhiên, xưởng may hơn 4 bộ quần áo mỗi ngày so với kế hoạch, dẫn đến hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng cần may bao nhiêu bộ quần áo? 3. Cho phương trình: x^2 - (2m + 1)x - 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m và tìm các giá trị của m sao cho |x1| - |x2| = 5 và x1 < x2.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán lần 2 vào năm 2022 2023 phòng GD ĐT Diễn Châu Nghệ An
Nội dung Đề thi thử Toán lần 2 vào năm 2022 2023 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán lần 2 vào năm 2022-2023 phòng GD&ĐT Diễn Châu, Nghệ An Đề thi thử Toán lần 2 vào năm 2022-2023 phòng GD&ĐT Diễn Châu, Nghệ An Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán lần 2 tuyển sinh vào lớp 10 THPT năm học 2022–2023 do phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An tổ chức. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán lần 2 vào lớp 10 năm 2022–2023 phòng GD&ĐT Diễn Châu, Nghệ An: + Bài toán 1: Giải phương trình x² – mx + m – 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x₁ và x₂ thoả mãn điều kiện x₁² + 3x₁x₂ = 3x₁ + 3m + 16. + Bài toán 2: Tuấn đạp xe từ nhà ra bãi biển và trở lại. Biết rằng vận tốc trên đường đi lớn hơn vận tốc trên đường về 2km/h. Thời gian đi và về chỉ khác nhau 3 phút. Tính vận tốc xe đạp của Tuấn, biết quãng đường là 3km. + Bài toán 3: Trong đường tròn (O), vẽ hai tiếp tuyến AB và AC. Kẻ đường kính BD và đường chéo AE. Chứng minh rằng tứ giác ABOC nội tiếp được đường tròn. + Bài toán 4: Tính IE² + AH.AO = AI², với I là trung điểm của ED, H là giao điểm của AO và BC. + Bài toán 5: Chứng minh rằng M là trung điểm của đoạn CK, khi có điểm K là chân đường vuông góc kẻ từ C đến OD và đoạn ED cắt CK tại M. Đây là những bài toán đa dạng và thú vị sẽ giúp các em học sinh rèn luyện kỹ năng giải toán và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi thử Toán lần 3 vào năm 2022 phòng GD ĐT Thái Hòa Nghệ An
Nội dung Đề thi thử Toán lần 3 vào năm 2022 phòng GD ĐT Thái Hòa Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán lần 3 vào năm 2022 phòng GD ĐT Thái Hòa Nghệ An Đề thi thử Toán lần 3 vào năm 2022 phòng GD ĐT Thái Hòa Nghệ An Chào các thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi thử môn Toán lần 3 để ôn thi tuyển sinh vào lớp 10 THPT năm 2022 do phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An tổ chức. Đề thi bao gồm câu hỏi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi thử Toán lần 3 vào lớp 10 năm 2022 phòng GD&ĐT Thái Hòa - Nghệ An: Một trường THCS đưa đoàn tham quan đến vườn thú giảm giá vé sau đợt dịch Covid. Hỏi số người cao từ 1,4 mét trở lên và dưới 1,4 mét đến 1 mét trong đoàn nếu tổng số tiền mua vé sau giảm giá là 3,420,000 đồng? Chứng minh các điều kiện liên quan đến đường tròn, tứ giác và điểm trên cung nhỏ AC. Lập phương trình đường thẳng d đi qua điểm thuộc parabol và song song với đường thẳng đã cho. Cùng thực hành và rèn luyện kỹ năng Toán của mình với đề thi này nhé! Chúc các bạn thành công!
Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An
Nội dung Đề thi thử Toán vào lần 3 năm 2022 2023 trường THCS Anh Sơn Nghệ An Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2022 – 2023 của trường THCS Anh Sơn, Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.Một số câu hỏi trong đề thi như sau:1. Tìm a và b để đồ thị của hàm số y = ax + b song song với đường thẳng 3x + y = 5 và cắt trục hoành tại điểm có hoành độ bằng 2.2. Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Thành phố du lịch A và B trong tháng 3/2022 đã đón 8,5 triệu lượt khách du lịch. Sang tháng 4/2022, lượt khách ở thành phố A tăng 20%, ở thành phố B tăng 15% nên tổng số khách đến cả hai thành phố là 10 triệu. Hỏi mỗi thành phố A và B đã đón bao nhiêu lượt khách du lịch trong tháng 3/2022?3. Câu hỏi về tam giác ABC, với dây cố định BC của đường tròn (O; R). Điểm A di chuyển trên đường tròn sao cho tam giác ABC có ba góc nhọn. Hãy chứng minh những tính chất sau: a) Tứ giác AHDK nội tiếp, b) HK vuông góc với đường kính AQ của đường tròn, c) Tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định khi E, F là các điểm trên đường tròn.Đề thi sẽ giúp các em học sinh ôn tập kiến thức cũng như làm quen với cấu trúc đề thi tuyển sinh vào lớp 10. Để tải file WORD của đề thi, vui lòng click vào đường link dưới đây. Chúc các em thi tốt!
Đề thi thử vào môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2022-2023 trường THCS Giảng Võ Hà Nội Đề thi thử vào môn Toán năm 2022-2023 trường THCS Giảng Võ Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022-2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Đề thi sẽ diễn ra vào ngày 18 tháng 05 năm 2022. Dưới đây là một số câu hỏi trong đề thi thử: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để hưởng ứng phong trào “Góp một cuốn sách nhỏ đọc ngàn cuốn sách hay” trong học kì I khối 8 và khối 9 quyên góp được 780 cuốn sách. Sang học kì ll số sách khối 8 quyên góp được giảm 15% số sách khối 9 quyên góp được tăng 20% so với học kì I nên cả hai khối quyên góp được 789 cuốn sách. Hỏi trong học kì I mỗi khối đã quyên góp được bao nhiêu cuốn sách? 2. Một bể cá mini có dạng hình cầu bán kính 7,5 cm. Hỏi cần ít nhất bao nhiêu lít nước để thay nước cho bể cá. Biết lượng nước cần thay bằng thể tích của bể (bỏ qua bề dày thành bể lấy pi ≈ 3,14 và làm tròn kết quả đến chữ số thập phân thứ nhất). 3. Cho x > 0 và y > 0 và x + y < 1. Tìm giá trị nhỏ nhất của biểu thức A. Hy vọng rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!