Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 do phòng Giáo dục và Đào tạo Lương Tài tổ chức gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 13 tháng 04 năm 2021. Đề thi này được thiết kế nhằm đánh giá năng lực và kiến thức của học sinh lớp 7 trong môn Toán. Với bốn dạng bài toán khác nhau, kỳ thi đề cao khả năng tư duy, logic và khéo léo trong giải quyết vấn đề. Học sinh sẽ được đánh giá dựa trên khả năng áp dụng kiến thức học tập vào thực tế và khả năng giải quyết vấn đề theo cách sáng tạo. Tham gia kỳ thi HSG cấp huyện Toán là một cơ hội để học sinh thể hiện khả năng của mình, học hỏi thêm kinh nghiệm từ việc giải quyết các bài toán phức tạp. Kỳ thi không chỉ là cơ hội để học sinh thách thức bản thân mình mà còn là dịp để họ trau dồi kiến thức và kỹ năng trong môn Toán. Chúng ta hy vọng rằng kỳ thi sẽ mang lại những trải nghiệm tích cực và ý nghĩa cho học sinh, giúp họ phát triển không chỉ về kiến thức mà còn về tư duy và kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).