Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 Hứa Lâm Phong

Nội dung 385 bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 Hứa Lâm Phong Bản PDF - Nội dung bài viết 385 Bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 của Hứa Lâm Phong: Sản phẩm độc đáo giúp bạn ôn luyện hiệu quả 385 Bài tập trắc nghiệm môn Toán ôn thi THPT Quốc gia 2017 của Hứa Lâm Phong: Sản phẩm độc đáo giúp bạn ôn luyện hiệu quả Tài liệu này bao gồm 64 trang với tổng cộng 385 bài tập trắc nghiệm môn Toán, được biên soạn bởi thầy Hứa Lâm Phong dành cho các bạn ôn thi THPT Quốc gia 2017. Với sự tỉ mỉ và chuyên nghiệp của thầy Phong, bạn sẽ được tiếp cận với những câu hỏi có cấu trúc giống với đề thi thật, giúp bạn nắm vững kiến thức và rèn luyện kỹ năng giải bài toán một cách linh hoạt và nhanh nhẹn.

Nguồn: sytu.vn

Đọc Sách

Bài tập nguyên hàm dành cho học sinh trung bình - yếu
Tài liệu gồm 74 trang, tổng hợp bài tập trắc nghiệm nguyên hàm mức độ nhận biết – thông hiểu (NB – TH), có đáp án và lời giải chi tiết, phù hợp với đối tượng học sinh trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Dạng toán 1: Sử dụng nguyên hàm cơ bản (Trang 1). Dạng toán 2: Nguyên hàm có điều kiện (Trang 6). Dạng toán 3: Phương pháp đổi biến số (Trang 10). Dạng toán 4: Phương pháp từng phần (Trang 14).
Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC ứng dụng của tích phân
Tài liệu gồm 55 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) ứng dụng của tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC ứng dụng của tích phân: A. KIẾN THỨC SÁCH GIÁO KHOA CẦN NẮM 1. Diện tích hình phẳng. 2. Thể tích của khối tròn xoay. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC tích phân và một số phương pháp tính tích phân
Tài liệu gồm 52 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) tích phân và một số phương pháp tính tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC tích phân và một số phương pháp tính tích phân: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Định nghĩa và tính chất của tích phân. 2. Các phương pháp tính tích phân. 3. Tích phân các hàm số đặc biệt. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân.