Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, hướng dẫn phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp, giúp học sinh học tốt chương trình Toán 8. A. TÓM TẮT LÍ THUYẾT Khi phân tích đa thức thành nhân tử, nếu cần ta phải phối hợp nhiều phương pháp để phân tích được triệt để. Các phương pháp thông thường: + Phương pháp ưu tiên số một là đặt nhân tử chung. + Phương pháp ưu tiên số hai là dùng hằng đẳng thức. + Cuối cùng là nhóm các hạng tử. Mục đích của việc nhóm các hạng tử nhằm làm cho quá trình phân tích đa thức thành nhân tử được tiếp tục bằng cách đặt nhân tử chung hoặc dùng hằng đẳng thức. Ngoài ra, ta còn có thể sử dụng các phương pháp nâng cao sau: + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp đổi biến. B. CÁC DẠNG TOÁN DẠNG 1 . Phối hợp các phương pháp thông thường. + Một số bài toán, nếu chỉ áp dụng một phương pháp thì ta không thể phân tích thành nhân tử được vì vậy ta phải kết hợp hai hoặc cả ba phương pháp đã nêu. + Khi phối phợp nhiều phương pháp, thông thường phương pháp đặt nhân tử chung được ưu tiên đầu tiên rồi đến nhóm hạng tử và hằng đẳng thức, một phương pháp có thể dùng nhiều lần. DẠNG 2 . Phương pháp tách một hạng tử thành nhiều hạng tử. + Tách các hạng tử của đa thức thành tổng hoặc hiệu của nhiều hạng tử, từ đó ta ghép cặp để được các nhóm hạng tử giống nhau và làm xuất hiện nhân tử chung. + Cách tổng quát để phân tích đa thức bậc hai ax2 + bx + c thành nhân tử là: • Tách bx thành b1x + b2x sao cho b1·b2 = ac. • Đặt nhân tử chung theo từng nhóm. + Đối với đa thức bậc ba trở lên thì tùy theo đặc điểm của các hệ số mà có cách tách riêng cho phù hợp. Một thủ thuật của loại này là dùng máy tính cầm tay nhẩm một nghiệm (thường là nghiệm nguyên, giả sử là x0), khi đó ta tìm cách ghép cặp làm sao cho xuất hiện nhân tử (x − x0) là được. DẠNG 3 . Phương pháp thêm bớt cùng một hạng tử. Khi phân tích đa thức thành nhân tử, đôi khi ta cần tăng thêm các hạng tử của đa thức bằng cách thêm và bớt cùng một hạng tử. Có hai cách thêm bớt thương gặp như sau: + Thêm và bớt cùng một hạng tử làm xuất hiện hiệu của hai bình phương. + Thêm và bớt cùng một hạng tử làm xuất hiện nhân tử chung. DẠNG 4 . Phương pháp đổi biến. + Khi gặp một đa thức phức tạp, ta nên dùng cách đặt ẩn phụ (thay một đa thức của biến cũ bằng một biến mới để được một đa thức đơn giản hơn, dễ phân tích hơn). + Sau khi phân tích với biến mới, ta thay trở lại biến cũ để phân tích tiếp (nếu được). DẠNG 5 . Tìm x thỏa một đẳng thức cho trước. Một tích bằng 0 khi một trong các nhân tử của nó bằng 0. Ta thực hiện theo các bước sau: + Chuyển tất cả sang vế trái để vế phải bằng 0. + Phân tích đa thức thành nhân tử để đưa về dạng tích. + Cho một trong các nhân tử bằng 0 và tìm x.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Nội dung Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng Bản PDF - Nội dung bài viết Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu này bao gồm 09 trang chứa thông tin chi tiết về việc tính diện tích xung quanh và thể tích của hình lăng trụ đứng. Nó tóm tắt lý thuyết về trọng tâm cần nắm vững, phân loại các dạng toán, và cung cấp hướng dẫn giải từ cơ bản đến nâng cao. Tài liệu cũng chứa các bài tập được lựa chọn kỹ lưỡng, kèm theo đáp án và lời giải chi tiết. Đây sẽ là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 với các khái niệm về hình lăng trụ đứng và hình chóp đều.
Chuyên đề hình lăng trụ đứng
Nội dung Chuyên đề hình lăng trụ đứng Bản PDF - Nội dung bài viết Chuyên đề hình lăng trụ đứng Chuyên đề hình lăng trụ đứng Tài liệu bao gồm 09 trang, tập trung vào việc tóm tắt lý thuyết cần thiết về hình lăng trụ đứng, cung cấp phân dạng và hướng dẫn giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đều đi kèm đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 về hình lăng trụ đứng và hình chóp đều. Phần bài giảng trong tài liệu giúp củng cố kiến thức về hình lăng trụ đứng thông qua ví dụ minh họa. Ngoài ra, phần phương pháp giải toán giúp học sinh hiểu rõ hơn cách tiếp cận và giải quyết các bài toán liên quan đến chủ đề này. Cuối cùng, phiếu bài tự luyện là công cụ hữu ích giúp học sinh ôn tập và kiểm tra kiến thức của mình.
Chuyên đề hình hộp chữ nhật
Nội dung Chuyên đề hình hộp chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình hộp chữ nhật Chuyên đề hình hộp chữ nhật Tài liệu này bao gồm 12 trang, tập trung vào tóm tắt lý thuyết quan trọng cần hiểu về chuyên đề hình hộp chữ nhật. Ngoài ra, tài liệu còn cung cấp hướng dẫn phân loại dạng toán và cách giải, kèm theo việc lựa chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Đồng thời, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ hơn cách giải các bài tập. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 về hình lăng trụ đứng và hình chóp đều. Nội dung bài giảng cung cấp kiến thức nền vững và đáp ứng nhu cầu học tập của học sinh. Phần phương pháp giải toán chia thành 2 dạng: Chứng minh các tính chất của hình hộp chữ nhật và tính toán các yếu tố liên quan đến hình hộp chữ nhật. Qua tài liệu này, học sinh sẽ nắm vững kiến thức cơ bản và nâng cao về hình hộp chữ nhật, từ đó phát triển kỹ năng giải bài tập và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu cũng giúp học sinh rèn luyện khả năng tư duy logic và phân tích trong quá trình giải toán hình học.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Nội dung Chuyên đề các trường hợp đồng dạng của tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề các trường hợp đồng dạng của tam giác vuông Chuyên đề các trường hợp đồng dạng của tam giác vuông Chuyên đề này bao gồm 15 trang tài liệu, tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến đồng dạng của tam giác vuông. Nội dung tài liệu tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông: Tam giác vuông đồng dạng khi có một góc nhọn bằng nhau và hai cạnh góc vuông tỉ lệ với nhau. 2. Dấu hiệu nhận biết hai tam giác vuông đồng dạng: Nếu cạnh huyền và một cạnh góc vuông của một tam giác vuông tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông khác thì hai tam giác đó đồng dạng. 3. Tỉ số các đường cao, trung tuyến, phân giác của hai tam giác đồng dạng: Tỉ số đường cao, trung tuyến, phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng: Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1: Chứng minh hai tam giác vuông đồng dạng bằng cách áp dụng trường hợp đồng dạng của hai tam giác thường hoặc sử dụng đặc biệt nhận biết của tam giác vuông. Dạng 2: Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ. Dạng 3: Tính tỉ số diện tích của hai tam giác đồng dạng bằng cách sử dụng định lý tỉ số diện tích cho hai tam giác đồng dạng. Đây là tài liệu học hữu ích giúp học sinh hiểu rõ về các trường hợp đồng dạng của tam giác vuông, từ đó nắm vững kiến thức và rèn luyện khả năng giải các dạng bài tập liên quan.