Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề tam giác

Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề học tập môn Toán 7 phần Đại số
Tài liệu gồm 786 trang, trình bày lý thuyết trọng tâm và phương pháp giải các dạng bài tập môn Toán 7 phần Đại số. Đại số 7 – Chuyên đề 1.1. Tập hợp số hữu tỉ. Đại số 7 – Chuyên đề 1.2. Tập hợp số hữu tỉ. Đại số 7 – Chuyên đề 2.1. Cộng, trừ số hữu tỉ. Đại số 7 – Chuyên đề 2.2. Cộng, trừ số hữu tỉ. Đại số 7 – Chuyên đề 3.1. Nhân, chia số hữu tỉ. Đại số 7 – Chuyên đề 3.2. Nhân, chia số hữu tỉ. Đại số 7 – Chuyên đề 4.1. Lũy thừa của một số hữu tỉ. Đại số 7 – Chuyên đề 4.2. Lũy thừa của một số hữu tỉ. Đại số 7 – Chuyên đề 5. Thứ tự thực hiện phép tính. Đại số 7 – Chuyên đề 6. Số thập phân vô hạn tuần hoàn. Đại số 7 – Chuyên đề 9.1. Biểu đồ hình quạt tròn. Đại số 7 – Chuyên đề 9.2. Biểu đồ hình quạt tròn. Đại số 7 – Chuyên đề 10.1. Biểu đồ đoạn thẳng. Đại số 7 – Chuyên đề 10.2. Biểu đồ đoạn thẳng. Đại số 7 – Chuyên đề 11. Tỉ lệ thức. Đại số 7 – Chuyên đề 12.1. Tính chất dãy tỉ số bằng nhau. Đại số 7 – Chuyên đề 13. Đại lượng tỉ lệ thuận. Đại số 7 – Chuyên đề 14. Đại lượng tỉ lệ nghịch. Đại số 7 – Chuyên đề 15. Biểu thức đại số. Đại số 7 – Chuyên đề 16. Đa thức một biến. Đại số 7 – Chuyên đề 17. Phép cộng và phép trừ đa thức một biến. Đại số 7 – Chuyên đề 18. Phép nhân đa thức một biến. Đại số 7 – Chuyên đề 19. Phép chia đa thức một biến. Đại số 7 – Chuyên đề 20.1. Làm quen với biến cố. Đại số 7 – Chuyên đề 20.2. Làm quen với biến cố. Đại số 7 – Chuyên đề 21.1. Làm quen với xác suất của biến cố. Đại số 7 – Chuyên đề 21.2. Làm quen với xác suất của biến cố.
Tài liệu học tập môn Toán 7 theo bộ sách Chân Trời Sáng Tạo (Tập 1)
Tài liệu học tập môn Toán 7 theo bộ sách Chân Trời Sáng Tạo (Tập 1) được biên soạn bởi thầy giáo Trần Công Dũng gồm 101 trang. MỤC LỤC : Chương 1 SỐ HỮU TỈ 1. Bài 1. TẬP HỢP CÁC SỐ HỮU TỈ 1. Bài 2. CỘNG, TRỪ SỐ HỮU TỈ 4. Bài 3. NHÂN, CHIA SỐ HỮU TỈ 8. Bài 4. LŨY THỪA CỦA MỘT SỐ HỮU TỈ 18. Chương 2 SỐ THỰC 35. Bài 1. SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI 35. Bài 2. SỐ THỰC 39. Bài 3. LÀM TRÒN SỐ 41. Chương 3 CÁC HÌNH KHỐI TRONG THỰC TIỄN 45. Bài 1. HÌNH HỘP CHỮ NHẬT – HÌNH LẬP PHƯƠNG 45. Bài 2. DTXQ VÀ TT CỦA HÌNH HỘP CHỮ NHẬT 47. Bài 3. HÌNH LĂNG TRỤ ĐỨNG TAM GIÁC – TỨ GIÁC 49. Bài 4. DTXQ VÀ TT CỦA HÌNH LĂNG TRỤ 51. Chương 4 HÌNH HỌC PHẲNG VÀ ĐƯỜNG THẲNG SONG SONG 56. Bài 1. CÁC GÓC Ở VỊ TRÍ ĐẶC BIỆT 56. Bài 2. TIA PHÂN GIÁC 58. Bài 3. HAI ĐƯỜNG THẲNG SONG SONG 60. Bài 4. CHỨNG MINH SONG SONG 64. Bài 5. ĐỊNH LÍ VÀ CHỨNG MINH MỘT ĐỊNH LÍ 69. Chương 5 MỘT SỐ YẾU TỐ THỐNG KÊ 71. Bài 1. THU THẬP VÀ PHÂN LOẠI DỮ LIỆU 72. Bài 2. PHÂN TÍCH VÀ XỬ LÝ DỮ LIỆU 76. Bài 3. BIỂU ĐỒ ĐOẠN THẲNG 79. Chương 6 BIỂU ĐỒ 88. Bài 1. BIỂU ĐỒ HÌNH QUẠT TRÒN 88.
22 chuyên đề bồi dưỡng Hình học 7
Tài liệu gồm 229 trang, tuyển tập 22 chuyên đề bồi dưỡng Hình học 7, có đáp án và lời giải chi tiết. CÁC CHUYÊN ĐỀ BỒI DƯỠNG Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 3. Chuyên đề 2: Hai đường thẳng vuông góc 7. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 11. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 15. Chuyên đề 5: Định lí 20. Chuyên đề 6: Chứng minh phản chứng 24. Chương II : TAM GIÁC. Chuyên đề 7: Tổng ba góc của một tam giác 29. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 35. Chuyên đề 9: Tam giác cân 48. Chuyên đề 10: Định lý Pytago 60. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 69. Chuyên đề 12: Vẽ hình phụ để giải bài toán 73. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 81. Chuyên đề 14: Tính số đo góc 88. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 96. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 100. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 104. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 108. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 112. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 116. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 122. Chuyên đề 22: Bất đẳng thức và cực trị hình học 127. HƯỚNG DẪN GIẢI – ĐÁP SỐ Chương I : ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG. Chuyên đề 1: Hai góc đối đỉnh 133. Chuyên đề 2: Hai đường thẳng vuông góc 138. Chuyên đề 3: Dấu hiệu nhận biết hai đường thẳng song song 142. Chuyên đề 4: Tiên đề Ơ-clit. Tính chất của hai đường thẳng song song 146. Chuyên đề 5: Định lí 150. Chuyên đề 6: Chứng minh phản chứng 154. Chương II : TAM GIÁC. Chuyên đề 8: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác 162. Chuyên đề 9: Tam giác cân 168. Chuyên đề 10: Định lý Pytago 175. Chuyên đề 11: Các trường hợp bằng nhau của tam giác vuông 180. Chuyên đề 12: Vẽ hình phụ để giải bài toán 185. Chuyên đề 13: Chứng minh ba điểm thẳng hàng 190. Chuyên đề 14: Tính số đo góc 194. Chương III : QUAN HỆ CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC. Chuyên đề 15: Quan hệ giữa góc và cạnh đối diện trong một tam giác 203. Chuyên đề 16: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu 209. Chuyên đề 17: Quan hệ giữa ba cạnh của một tam giác 213. Chuyên đề 18: Tính chất đường trung tuyến của tam giác 219. Chuyên đề 19: Tính chất tia phân giác của một góc. Tính chất ba đường phân giác của tam giác 226. Chuyên đề 20: Tính chất ba đường trung trực, ba đường cao của tam giác 232. Chuyên đề 21: Chứng minh ba đường thẳng đồng quy 239. Chuyên đề 22: Bất đẳng thức và cực trị hình học 245.
Chuyên đề tính chất ba đường cao trong tam giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường cao trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được khái niệm về đường cao của tam giác, tính chất ba đường cao trong tam giác và các đường đồng quy trong tam giác cân. Kĩ năng: + Vận dụng được các tính chất của đường cao để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định trực tâm của tam giác. Để xác định trực tâm của tam giác, ta đi tìm giao điểm của hai đường cao trong tam giác đó. Dạng 2 : Chứng minh hai đường thẳng vuông góc. Cách 1. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm. Cách 2. Sử dụng định lí trong tam giác cân thì đường trung tuyến, đường phân giác ứng với cạnh đáy đồng thời là đường cao. Cách 3. Hai đường thẳng song song với nhau thì cùng vuông góc với đường thẳng thứ ba. Dạng 3 : Các bài toán tổng hợp. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm.