Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Sơn Động - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Sơn Động – Bắc Giang : + Ba khối 6 7 8 của một trường THCS A trên địa bàn huyện Sơn Động có tổng số 294 học sinh. Nếu 1 3 số học sinh khối 6 1 4 số học sinh khối 7 và 1 5 số học sinh khối 8 tham gia dự thi học sinh giỏi cấp huyện đợt 2 năm học 2023 2024 thì số học sinh còn lại của ba khối bằng nhau. Tính số học sinh mỗi khối của trường THCS A? + Kim tự tháp Kheops là công trình kiến trúc nổi tiếng thế giới. Để xây dựng được công trình này, người ta phải sử dụng tới hơn 2,5 triệu mét khối đá, với diện tích đáy lên tới 252198,16 m. Biết rằng đáy của kim tự tháp Kheops có dạng một hình vuông. Độ dài cạnh đáy của kim tự tháp này là (Làm tròn kết quả với độ chính xác 0,05). + Hình bên mô tả xe chở hai bánh mà thùng chứa của nó có dạng hình lăng trụ đứng tam giác với các kích thước cho trên hình. Tính thể tích thùng chứa của xe chở hai bánh đó?

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Cẩm Thủy - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Thủy, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Cẩm Thủy – Thanh Hoá : + Số A được chia thành ba phần số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Biết f x chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f x. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ∆ADC = ∆ABE. b) Chứng minh rằng: = 600. c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng ∆AMN đều. d) Chứng minh rằng IA là phân giác của góc DIE.
Đề HSG Toán 7 năm 2022 - 2023 cụm chuyên môn 3T-H-G Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 cụm chuyên môn 3T-H-G trực thuộc phòng GD&ĐT huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 7 năm 2022 – 2023 cụm chuyên môn 3T-H-G Bình Xuyên – Vĩnh Phúc : + Ba lớp 7A, 7B, 7C cùng tham gia trồng cây trong vườn trường, lúc đầu thầy phụ trách dự định giao số cây trồng cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó thầy giao theo tỉ lệ 4:5:6 nên có một lớp trồng nhiều hơn dự định 4 cây. Tính tổng số cây mà ba lớp đã trồng. + Cho tam giác ABC có ba góc nhọn (AB AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. a) Chứng minh rằng DC = BE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. + Cho tam giác ABC cân tại A, gọi D là trung điểm của AC. Trên đoạn BD lấy điểm E sao cho DAE ABD. Chứng minh rằng DAE ECB.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Số A được chia thành ba phần tỉ lệ theo. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 viết được dưới dạng hiệu của hai số chính phương. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE.
Đề HSG cấp cụm Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2023. Trích dẫn Đề HSG cấp cụm Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b – 5| + b – 5. + Tìm các giá trị nguyên của x để biểu thức C 22 3x 4 x có giá trị lớn nhất. + Cho ∆ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. a) Chứng minh rằng: MC = BN. b) Chứng minh rằng: BN ⊥ CM. c) Kẻ AH ⊥ BC (H ∈ BC). Chứng minh AH đi qua trung điểm của MN.