Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Đống Đa TP HCM

Nội dung Đề kiểm tra cuối học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Đống Đa TP HCM Bản PDF - Nội dung bài viết Đề kiểm tra cuối học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Đống Đa TP HCM Đề kiểm tra cuối học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Đống Đa TP HCM Chào đón quý thầy, cô giáo và các em học sinh lớp 9! Dưới đây là bài kiểm tra cuối học kỳ 2 môn Toán năm học 2021 – 2022 tại trường THCS Đống Đa, quận Bình Thạnh, thành phố Hồ Chí Minh. Trích dẫn các câu hỏi trong đề kiểm tra: + Giải bài toán bằng cách lập hệ phương trình: Trong kỳ thi học kì II môn Toán lớp 9, một phòng thi của trường có 24 thí sinh dự thi. Cuối buổi thi, sau khi thu bài, giám thị đếm được tổng số tờ là 59 tờ giấy thi. Hỏi trong phòng thi có bao nhiêu thí sinh làm bài 2 tờ giấy thi, bao nhiêu thí sinh làm bài 3 tờ giấy thi? Biết rằng có 3 thí sinh chỉ làm 1 tờ giấy thi. + Công ty A thực hiện cuộc khảo sát về mối liên hệ giữa số lượng sản phẩm bán ra và giá của mỗi sản phẩm. Biết rằng khi giá bán là 500,000 đồng thì số lượng sản phẩm bán ra là 1300, và khi giá bán là 540,000 đồng thì số lượng sản phẩm bán ra là 1600. Hãy xác định hệ số a và b trong mối quan hệ y = ax + b, và tính số lượng sản phẩm bán ra với giá bán là 480,000 đồng mỗi sản phẩm. + Người ta thả một quả trứng vào cốc thủy tinh hình trụ có đường kính đáy 10cm và nước trong cốc dâng thêm 7,5 mm. Hãy tính thể tích của quả trứng, biết rằng trứng chìm hoàn toàn vào nước. (Sử dụng công thức tính thể tích hình trụ: V = pi*r^2*h, với r là bán kính đáy và h là chiều cao của hình trụ) Hy vọng các em sẽ làm bài tốt và đạt kết quả cao trong kỳ thi này. Chúc quý thầy cô giáo và các em học sinh lớp 9 thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Ông X sở hữu một mảnh đất hình chữ nhật có chu vi là 42 mét và độ dài đường chéo của mảnh đất bằng 15 mét. Ông ấy định bán mảnh đất đó với giá thị trường là 50 triệu đồng cho một mét vuông. Hãy xác định giá tiền của mảnh đất đó. + Quả bóng vàng của cầu thủ bóng đá Lionel Messi cầm trên tay (như hình dưới) dạng hình cầu có chu vi đường tròn lớn khoảng 70cm. Hãy tính diện tích bề mặt quả bóng đó (theo đơn vị cm, làm tròn chữ số thập phân thứ hai và pi = 3,14). + Cho tam giác nhọn ABC (AB > AC) nội tiếp đường tròn (O). Phân giác trong của BAC cắt (O) tại M (khác A). Gọi E F K lần lượt là trung điểm của AC AB AM. 1) Chứng minh các điểm A E K O F cùng nằm trên một đường tròn. 2) Chứng minh OK là phân giác ngoài của EOF. 3) Đường tròn đường kính AM cắt các tia OE OF lần lượt tại P Q. Gọi H G lần lượt là chân các đường vuông góc hạ từ K xuống OP OQ và gọi S là giao điểm của KO với PQ. Chứng minh HP = GQ và OA vuông góc SM.
Đề thi HK2 Toán 9 năm 2021 - 2022 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội. Trích dẫn đề thi HK2 Toán 9 năm 2021 – 2022 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một canô xuôi dòng 42km rồi ngược dòng trở lại 20km hết tổng cộng 5 giờ. Biết vận tốc của dòng nước là 2km/h. Tính vận tốc của canô lúc dòng nước yên lặng. + Một thùng sơn hình trụ có diện tích đáy là 100pi cm2. Tỷ số giữa chiều cao thùng sơn và bán kính đáy là 8:5. Tính thể tích sơn có thể chứa được trong thùng (bỏ qua bề dày của vỏ thùng). + Cho đường tròn (O). Điểm A ở ngoài đường tròn (O). Qua A kẻ một cát tuyến d cắt đường tròn (O) tại hai điểm B và C (B nằm giữa A và C). Kẻ đường kính EF vuông góc với BC tại D (E thuộc cung nhỏ BC). Tia AF cắt đường tròn (O) tại điểm thứ hai I, các dây El và BC cắt nhau tại K. 1) Chứng minh tứ giác DKIF nội tiếp. 2) Chứng minh EB2 = EK.EI. 3) Cho ba điểm A, B, C cố định. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua B, C thì đường thẳng EI luôn đi qua một điểm cố định.
Đề thi cuối học kì 2 Toán 9 năm 2020 - 2021 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 2 Toán 9 năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 08 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài 90 phút.
Đề thi học kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Vũng Tàu - BR VT
Đề thi học kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2020 – 2021 trường THCS Vũng Tàu – BR VT : + Cho hàm số y = -1/4×2 có đồ thị (P) và đường thẳng (d): y = x – m (m là tham số). 1. Vẽ đồ thị (P). 2. Tìm m để (d) cắt (P) tại hai điểm phân biệt. + Một nhóm học sinh dự định đóng góp 300 cuốn vở để làm quà tặng cho các em nhỏ có hoàn cảnh khó khăn ở một mái ấm tình thương. Thực tế ngày đi trao quà có thêm 2 bạn tham gia đi cùng với nhóm và mỗi bạn trong nhóm góp nhiều hơn dự định 1 cuốn vở, nên tổng số vở góp được là 351 cuốn. Hỏi ban đầu nhóm đó có bao nhiêu học sinh và mỗi học sinh dự định góp bao nhiêu cuốn vở? (biết rằng số vở mỗi học sinh đóng góp là như nhau). + Cho nửa đường tròn tâm O có đường kính AB bằng 2R (R > 0). Gọi C là điểm chính giữa của cung AB và M là điểm thuộc cung BC (M khác B và C). Tiếp tuyến tại M của nửa đường tròn tâm O cắt các đường thẳng OC và AB theo thứ tự tại S và K. AM cắt OC tại I. 1. Tính diện tích hình viên phân được giới hạn bởi AC và cung AC (tính theo R). 2. Chứng minh tứ giác OIMB là tứ giác nội tiếp và SI = SM. 3. Chứng minh AC là tiếp tuyến của đường tròn ngoại tiếp tam giác ICM. 4. Gọi H là hình chiếu của M trên AB. Chứng minh BH.AK = BK.AH.