Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức (dành cho học sinh Yếu - TB) - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề số phức dành cho học sinh Yếu – TB, tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 31 trang, tóm tắt lý thuyết cơ bản số phức và tuyển chọn các bài tập trắc nghiệm số phức ở mức độ nhận biết – thông hiểu, giúp học sinh nắm được cách giải một số dạng toán cơ bản về số phức, các bài tập trong tài liệu được phân tích và giải chi tiết. Khái quát số phức (dành cho học sinh Yếu – TB) – Đặng Việt Đông: Bài 1 : SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức. + Số phức (dạng đại số) z = a + bi (a, b thuộc R), trong đó a là phần thực, b là phần ảo, i là đơn vị ảo, i^2 = -1. + Tập hợp số phức kí hiệu C. + z là số thực khi và chỉ khi phần ảo của z bằng 0. + z là số ảo (hay còn gọi là số thuần ảo khi và chỉ khi phần thực bằng 0. + Số 0 vừa là số thực vừa là số ảo. 2. Hai số phức bằng nhau. + Hai số phức z1 = a + bi (a, b thuộc R) và z2 = c + di (c, d thuộc R) và bằng nhau khi phần thực và phần ảo của chúng tương đương bằng nhau. 3. Số phức liên hợp. + Số phức liên hợp của z = a + bi (a, b thuộc R) là z¯ = a – bi. 4. Môđun của số phức. + Độ dài của vectơ OM được gọi là môđun của số phức z và kí hiệu là |z|. + Một số tính chất môđun của số phức. 5. Phép cộng trừ nhân chia số phức. [ads] Bài 2 : PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC 1. Căn bậc hai của số thực âm. + Cho số z, nếu có số phức z1 sao cho z1^2 = z thì ta nói z1 là một căn bậc hai của z. + Mọi số phức z khác 0 đều có hai căn bậc hai. + Căn bậc hai của số thực âm z là ±i√|z|. 2. Phương trình bậc hai với hệ số thực. Cho phương trình bậc hai ax^2 + bx + c = 0 (a, b, c thuộc R, a khác 0). Xét biệt số Δ = b^2 – 4ac của phương trình. Ta thấy: + Khi Δ = 0 phương trình có một nghiệm thực x = -b/2a. + Khi Δ > 0 phương trình có hai nghiệm thực phân biệt x = (-b ± √Δ)/2a. + Khi Δ < 0 phương trình có hai nghiệm phức x = (-b ± i√|Δ|)/2a. Bài 3 : TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC 1. Biểu diễn hình học số phức. + Số phức z = a + bi (a, b thuộc R) được biểu diễn bởi điểm M(a;b) hay vectơ u = (a;b) trong mặt phẳng phức với hệ tọa độ Oxy. 2. Một số tập hợp điểm biểu diễn số phức z thường gặp. + ax + by + c = 0: tập hợp điểm là đường thẳng. + x = 0: tập hợp điểm là trục tung Oy, y = 0: tập hợp điểm là trục hoành Ox. + (x – a)^2 + (y – b)^2 < R^2: tập hợp điểm là hình tròn tâm I(a;b), bán kính R. + (x – a)^2 + (y – b)^2 = R^2, x^2 + y^2 – 2ax – 2by + c = 0: tập hợp điểm là đường tròn có tâm I(a;b) bán kính R. + x > 0: tập hơp điểm là miền bên phải trục tung, y < 0: tập hợp điểm là miền phía dưới trục hoành, x < 0: tập hợp điểm là miền bên trái trục tung, y > 0: tập hợp điểm là phía trên trục hoành. + y = ax^2 + bx + c: tập hợp điểm là đường Parabol. + x^2/a^2 + y^2/b^2 = 1: tập hợp điểm là đường Elip. + x^2/a^2 – y^2/b^2 = 1: tập hợp điểm là đường Hyperbol.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải bài toán cực trị số phức - Lương Đức Trọng
Tài liệu gồm 12 trang được biên soạn bởi tác giả Lương Đức Trọng trình bày 2 phương pháp giải bài toán cực trị số phức – một dạng toán số phức vận dụng cao trong chương trình Giải tích 12 chương 4. Hai phương pháp được nói đến trong tài liệu đó là: + Phương pháp đại số. + Phương pháp hình học. Đây là lớp các bài toán vận dụng cao trong đề thi THPT Quốc gia môn Toán, để giải được dạng toán này, cần nắm vững các lý thuyết sau đây: Bất đẳng thức tam giác: + |z1 + z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≥ 0 + |z1 − z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 + z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 − z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≥ 0 [ads] 2. Công thức trung tuyến: |z1 + z2|^2 + |z1 − z2|^2 = 2(|z1|^2 + |z2|^2) 3. Tập hợp điểm: + |z − (a + bi)| = r: Đường tròn tâm I(a; b) bán kính r + |z − (a1 + b1i)| = |z − (a2 + b2i)|: Đường trung trực của AB với A(a1; b1), B(a2; b2) + |z − (a1 + b1i)| + |z − (a2 + b2i)| = 2a: – Đoạn thẳng AB với A(a1; b1), B(a2; b2) nếu 2a = AB – Elip (E) nhận A, B làm hai tiêu điểm với độ dài trục lớn là 2a nếu 2a > AB Đặc biệt |z + c| + |z − c| = 2a: Elip (E) : x^2/a^2 + y^2/b^2 = 1 với b = √(a^2 − c^2)
Tìm nhanh tọa độ tâm và bán kính đường tròn trong bài toán tìm tập hợp điểm biểu diễn số phức - Đặng Thanh
Tài liệu gồm 5 trang tuyển tập công thức tìm nhanh tọa độ tâm và bán kính đường tròn trong bài toán tìm tập hợp điểm biểu diễn số phức. Nội dung tài liệu gồm phần trình bày công thức, chứng minh công thức và một số bài toán áp dụng có hướng dẫn giải. Hay có bao giờ bạn đặt câu hỏi rằng: Nếu trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức z là đường tròn và với z1, z2 ∈ C thì tập hợp các điểm biểu diễn số phức w = z1.z + z2 là hình gì hay chưa? Liệu rằng nó có còn là một đường tròn hay không? Và nếu đúng tập hợp các điểm biểu diễn w là đường tròn thật thì tâm và bán kính của nó tính bằng cách nào cho nhanh? [ads] Chúng ta cùng nhau tìm hiểu kết quả nhé! Kết quả 1 : Cho z1 ∈ C, số phức z thỏa mãn |z – z1| = R. Tập hợp điểm biểu diễn số phức z là đường tròn (I1; R), trong đó I1 là điểm biểu diễn của số phức z1 trên mặt phẳng tọa độ Oxy. Kết quả 2 : Cho z1, z2 ∈ C, z2 ≠ 0, số phức z thỏa mãn |z – z1| = R. Khi đó ta có: + Tập hợp điểm biểu diễn số phức w1 = z.z2 là đường tròn, tâm là điểm biểu diễn của z1.z2, bán kính R.|z2| + Tập hợp điểm biểu diễn số phức w = z/z2 là đường tròn, tâm là điểm biểu diễn của z1/z2, bán kính R/|z2| + Tập hợp điểm biểu diễn số phức w3 = z + z2 là đường tròn, tâm là điểm biểu diễn của z1 + z2, bán kính R + Tập hợp điểm biểu diễn số phức w4 = z – z2 là đường tròn, tâm là điểm biểu diễn của z1 – z2, bán kính R Kết quả 3 : Cho z1, z2, z3 ∈ C, số phức z thỏa mãn |z – z1| = R. Khi đó: Tập hợp điểm biểu diễn số phức w = z2.z + z3 là một đường tròn, tâm là điểm biểu diễn của số phức z2.z1 + z3, bán kính |z2|.R
Công thức và thủ thuật tính nhanh bài toán cực trị số phức - Cao Văn Tuấn
Tài liệu gồm 8 trang tuyển tập công thức và thủ thuật tính nhanh bài toán cực trị số phức thông qua các ví dụ và bài tập có lời giải. Bài toán cơ bản : Cho số phức z thỏa mãn điều kiện (*) cho trước. Tìm giá trị lớn nhất, nhỏ nhất của |z|. Phương pháp chung : + Bước 1. Tìm tập hợp (H) các điểm biểu diễn số phức z thỏa mãn điều kiện (*) + Bước 2. Tìm số phức z tương ứng với điểm biểu diễn M ∈ (H) sao cho khoảng cách OM lớn nhất, nhỏ nhất [ads]
Phương pháp chuẩn hóa trong số phức - Phạm Minh Tuấn
Tài liệu gồm 6 trang giới thiệu kỹ thuật chuẩn hóa giải nhanh bài toán số phức thông qua 14 bài tập có lời giải chi tiết, phương pháp này giúp ta giải quyết nhanh một lớp bài toán số phức khó. Trích dẫn tài liệu : + Cho hai số phức z, w khác 0 và thỏa mãn |z – w| = 2.|z| = |w|. Gọi a, b lần lượt là phần thực và phần ảo của số phức u = z/w. Tính a^2 + b^2? + Cho số phức z = a + bi ≠ 0 sao cho z không phải là số thực và w = z/(1 + z^3) là số thực. Tính |z|^2/(1 + |z|^2) + Cho hai số phức z, w khác 0 và thỏa mãn |z – w| = 5.|z| = |w|. Gọi a, b lần lượt là phần thực và phần ảo của số phức u = z.w. Tính a^2 + b^2? [ads]