Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho tam giác ABC nhọn có các đường cao AD BE và CF cắt nhau tại H. Qua B kẻ đường thẳng song song vớiCF cắt tia AD tại K. 1) Chứng minh ∆AEF đồng dạng ∆ABC. 2) Chứng minh 2 AB AD AK và 1 HD HE HF AD BE CF. 3) Gọi I là trung điểm BC. Tia HI cắt BK tại N. Chứng minh AN vuông góc EF. + Cho tam giác ABC, M là điểm di chuyển trên đoạn BC. Từ M kẻ MD song song với AC, ME song song với AB (D thuộc AB; E thuộc AC).Xác định vị trí của M để diện tích tứ giác ADME lớn nhất. + Giải bóng đá của một trường THCS có 10 đội tham gia thi đấu vòng tròn một lượt (hai đội bất kỳ đều thi đấu với nhau một trận và phân rõ thắng – thua). Biết rằng đội thứ nhất thắng 1 a trận và thua 1 b trận, đội thứ hai thắng 2 a trận và thua 2 b trận, đội thứ 10 thắng 10 a trận và thua 0 b trận. Chứng minh rằng: 10 a b.

Nguồn: toanmath.com

Đọc Sách

Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc
Nội dung Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi có 10 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn Đề HSG huyện Toán lớp 8 vòng 2 năm 2022 - 2023 phòng GD&ĐT Lập Thạch - Vĩnh Phúc: 1. Biết rằng đa thức \( f(x) \) khi chia cho \( x - 2 \) thì được số dư là 6067; khi chia cho \( x + 3 \) thì được số dư là -4043. Tìm đa thức dư khi chia đa thức \( f(x) \) cho đa thức \( x² + x - 6 \). 2. Cho hình vuông \( ABCD \) có cạnh bằng 8. Trên cạnh \( BC \), lấy điểm M sao cho \( BM = 5 \). Gọi N là giao điểm của đường thẳng \( CD \) và đường thẳng vuông góc với \( AM \) tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. 3. Cho hình vuông \( ABCD \) có cạnh bằng a. Trên cạnh \( AD \) lấy điểm M sao cho \( AM = 3MD \). Kẻ tia \( BX \) cắt cạnh \( CD \) tại I sao cho \( ABM = MBI \). Kẻ tia phân giác của \( CBI \), tia này cắt cạnh \( CD \) tại N. a) Chứng minh rằng: \( MN = AM + NC \). b) Tính diện tích tam giác BMN theo a. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kì thi sắp tới. Chúc các em thành công!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 8 Đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi được thiết kế với hình thức 100% tự luận, thời gian là 120 phút (không tính thời gian giao đề), bao gồm đáp án, lời giải chi tiết và thang chấm điểm. Kỳ thi sẽ diễn ra vào ngày 22 tháng 02 năm 2023. Đề thi bao gồm các câu hỏi sau: Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. Câu hỏi yêu cầu chứng minh tứ giác AMCE là hình bình hành, chứng minh các tam giác ADE và ECN bằng nhau, chứng minh tứ giác AENF là hình vuông, và tính tỉ số diện tích của hai tam giác NKL và NEP. Thí sinh lựa chọn làm một trong hai câu sau: chứng minh rằng nếu 2n (với n là số nguyên dương) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương, hoặc tìm giá trị nhỏ nhất và lớn nhất của biểu thức 2^6 + 2^3 + 1^x. Cho biểu thức A = 3^3 * 3^3 * ... * 2022^3 * 2023^3. Câu hỏi yêu cầu tìm số dư khi chia số A cho 3.
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Sầm Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Đề thi học sinh giỏi Toán lớp 8 năm 2022-2023 tại Sầm Sơn Thanh Hóa Sytu xin trân trọng giới thiệu đến các thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 8 năm học 2022-2023 tại phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa. Đề thi này là cơ hội cho các em học sinh thể hiện tài năng, kiến thức và kỹ năng Toán của mình, đồng thời giúp học sinh rèn luyện, nâng cao kiến thức và kỹ năng Toán thông qua các bài tập thực hành và câu hỏi thảo luận.