Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề thi thử Toán vào 10 lần 2 năm 2023 2024 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF Đề thi thử Toán vào lớp 10 lần 2 năm 2023 - 2024 do Phòng Giáo dục và Đào tạo huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức đã được SYTU giới thiệu đến thầy cô và các em học sinh lớp 9. Đề thi bao gồm 10 câu hỏi, trong đó có 4 câu trắc nghiệm chiếm 20% và 6 câu tự luận chiếm 80%. Thời gian làm bài cho mỗi thí sinh là 90 phút, không tính thời gian giao đề. Bản đề thi đã có sẵn đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một số câu hỏi trong đề thi bao gồm:
- Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol P tại hai điểm phân biệt thoả mãn điều kiện đã cho.
- Xác định số cây táo và cây ổi ban đầu mà bác nông dân dự định trồng sau khi thêm được số cây mới theo tỉ lệ cho trước.
- Chứng minh các tính chất của các tứ giác và tam giác trong hình học.

Đề thi này cũng có sự hỗ trợ từ SYTU thông qua việc cung cấp file Word để giúp thầy cô dễ dàng tìm hiểu và sử dụng. Việc tổ chức đề thi thử này giúp các em học sinh chuẩn bị tốt hơn cho kỳ thi tuyển sinh vào lớp 10, từ đó nâng cao cơ hội đỗ vào trường phù hợp với năng lực của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Kiên Giang
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Kiên Giang tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Kiên Giang. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Kiên Giang. Kỳ thi được diễn ra vào ngày 06/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Kiên Giang : + Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh 10cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB =  5cm, OH = 4cm và diện tích phần gạch sọc ñược tính theo công thức S = 4/3.OA.OH. Tính diện tích bề mặt hoa văn đó (phần hình được tô đen). [ads] + Nhân ngày Quốc tế thiếu nhi 1/6 vừa qua. Giáo viên chủ nhiệm lớp 9A phân công 13 học sinh (gồm x nam và y nữ) tham gia gói 80 phần quà cho các em thiếu nhi. Biết tổng số quà học sinh nam gói được bằng tổng số quà học sinh nữ gói được. Số quà mỗi bạn nam gói nhiều hơn số quà mỗi bạn nữ gói là 3 phần. Tính giá trị của P = 6x − 5y. + Cho đường tròn (O) đi qua hai đỉnh A, B và tiếp xúc với cạnh CD của một hình vuông (tham khảo hình vẽ). Tính bán kính R của đường tròn đó biết cạnh hình vuông dài 8cm.
Đề tuyển sinh lớp 10 môn Toán năm 2019 - 2020 sở GDĐT Tiền Giang
Ngày 05 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Tiền Giang tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán nhằm tuyển chọn học sinh đáp ứng yêu cầu học lực, để chuẩn bị cho năm học mới 2019 – 2020. Đề tuyển sinh lớp 10 môn Toán năm 2019 – 2020 sở GD&ĐT Tiền Giang gồm 05 bài toán, đề được biên soạn theo dạng đề tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2019 – 2020 sở GD&ĐT Tiền Giang : + Hai người đi xe đạp từ huyện A đến huyện B trên quãng đường dài 24 km, khởi hành cùng một lúc. Vận tốc xe của người thứ nhất hơn vận tốc xe của người thứ hai là 3 km/h nên người thứ nhất đến huyện B trước người thứ hai là 24 phút. Tính vận tốc của mỗi người. [ads] + Cho hình nón có đường sinh bằng 17cm và diện tích xung quanh bằng 136pi cm2. Tính bán kính đáy và thể tích của hình nón. + Cho parabol (P): y = x^2, các đường thẳng (d1): y = -x + 2 và (d2): y = x + m – 3. 1. Vẽ đồ thị của (P) và (d1) trên cùng một hệ trục tọa độ. 2. Bằng phép tính, tìm tọa độ giao điểm của (P) và (d1). 3. Tìm giá trị của tham số m, biết đường thẳng (d2) tiếp xúc với parabol (P).
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Nam Định
Nhằm tuyển chọn các em học sinh đã tốt nghiệp khối Trung học Cơ sở, đáp ứng đủ năng lực học tập, vào học tại các trường Trung học Phổ thông trên địa bàn tỉnh Nam Định, vừa qua, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi Toán tuyển sinh lớp 10 THPT năm học 2019 – 2020. Đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Nam Định được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, đề thi gồm 01 trang, phần trắc nghiệm gồm 8 câu, chiếm 20% số điểm, phần tự luận gồm 05 câu, chiếm 80% số điểm, thời gian học sinh làm bài là 120 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Nam Định : + Qua điểm A năm ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC của đường tròn (B, C là các tiếp điểm. Gọi E là trung điểm của đoạn AC, F là giao điểm thứ hai của EB với (O). 1) Chứng minh tứ giác ABOC là tứ giác nội tiếp và ∆CEF đồng dạng ∆BEC. 2) Gọi K là giao điểm thứ hai của AF với đường tròn (O). Chứng minh BF.CK = BK.CF. 3) Chứng minh AE là tiếp tuyến của đường tròn ngoại tiếp ∆ABF. + Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm: Tìm tất cả các giá trị của m để hàm số y = (1 – m)x + m + 1 đồng biến trên R. + Xét các số x, y, z thay đổi thoả mãn x^3 + y^3 + z^3 – 3xyz = 2. Tìm giá trị nhỏ nhất của biểu thức P = 1/2.(x + y + z)^2 + 4(x^2 + y^2 + z^2 – xy – yz – zx).
Đề tuyển sinh lớp 10 năm 2019 - 2020 môn Toán sở GDĐT Quảng Nam (chuyên Toán)
Ngày 10 – 12 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 lớp chuyên Toán để chuẩn bị cho năm học 2019 – 2020, đề thi được biên soạn theo dạng đề tự luận với 6 bài toán, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Quảng Nam (chuyên Toán) : + Cho parabol (P): y = -x^2 và đường thẳng (d): y = x + m – 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x1^2 + x2^2 < 3. + Chứng minh rằng với mọi số nguyên dương n, số M = 9.3^4n – 8.2^4n + 2019 chia hết cho 20. [ads] + Cho hình bình hành ABCD có góc A nhọn. Gọi H, K lần lượt là hình chiếu vuông góc của C lên các đường thẳng AB, AD. a) Chứng minh AB.AH + AD.AK = AC^2. b) Trên hai đoạn thẳng BC, CD lần lượt lấy hai điểm M, N (M khác B, M khác C) sao cho hai tam giác ABM và ACN có diện tích bằng nhau; BD cắt AM và AN lần lượt tại E và F. Chứng minh BM/BC + DN/DC = 1 và BE + DF > EF.