Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Tại bể bơi hình chữ nhật ở VRC – Thành phố Vinh, bạn An thực hiện đo diện tích bể bơi bằng cách: An đi 1 vòng quanh bể bơi bằng cách đi sát mép bể bơi từ đầu đến cuối cạnh thứ nhất rồi đến cạnh thứ hai, cạnh thứ ba và hết cạnh thứ tư. Sau khi đi hết một vòng trở về điểm xuất phát ban đầu An thấy mình đã thực hiện 140 bước đi, số bước chân đi hết cạnh thứ hai nhiều hơn số bước chân đi hết cạnh thứ nhất là 30 bước. Biết chiều dài mỗi bước chân của An đi là như nhau và bằng 0,5 m. Hỏi diện tích bể bơi mà An đã đo được là bao nhiêu? + Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) (A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G. a) Chứng minh tứ giác AOBF nội tiếp b) Chứng minh I là trung điểm của KG c) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại P (P khác B). Chứng minh PM vuông góc với NB. + Giả sử phương trình 2 2 2 1 0 x x có 2 nghiệm 1 2 x x. Không giải phương trình đã cho, lập một phương trình bậc 2 ẩn y có các nghiệm là 1 2 1 1 x x 1 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cà Mau
Nội dung Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Cà Mau Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Cà Mau Chào các thầy cô giáo và các em học sinh! Đây là đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2021 - 2022 sở GD&ĐT Cà Mau, diễn ra vào ngày 11 tháng 06 năm 2021. Hãy cùng trải nghiệm và thử sức với những câu hỏi thú vị sau đây! Bài 1: Tất cả học sinh lớp 9 của Trường Trung học Cơ sở Tân Tiến tham gia xếp hàng để tập thể dục. Mỗi hàng có không quá 25 học sinh. Nếu xếp mỗi hàng 16 học sinh thì còn thừa một học sinh; nếu bớt đi một hàng thì có thể chia đều tất cả các học sinh vào các hàng còn lại sao cho số học sinh ở mỗi hàng là bằng nhau. Hỏi Trường Trung học Cơ sở Tân Tiến có bao nhiêu học sinh lớp 9? Bài 2: Ủy ban Bầu cử của tỉnh A thông báo có 51 đại biểu nam và nữ trúng cử Hội đồng nhân dân tỉnh khóa X, nhiệm kỳ 2021-2026. Tuổi trung bình của các đại biểu nam trúng cử là 33 tuổi, tuổi trung bình của các đại biểu nữ trúng cử là 29 tuổi, và tuổi trung bình của tất cả 51 đại biểu trúng cử là 51 tuổi. Hãy tính số đại biểu nam và nữ trúng cử của tỉnh A. Bài 3: Cho tam giác ABC có ba góc nhọn và các đường cao AM, BN, CP cắt nhau tại điểm H. Điểm I là điểm đối xứng của H qua BC. a) Chứng minh tứ giác ABIC nội tiếp vào đường tròn (O). b) Gọi K là trung điểm của AB, chứng minh NK là tiếp tuyến của đường tròn ngoại tiếp tam giác NHC. c) Gọi E và F lần lượt là điểm còn lại của BN và CP khi cắt đường tròn (O). Tính giá trị biểu thức AI * BE * CF / GM * BN * CP. Hy vọng rằng các bạn sẽ thấy hứng thú và thử sức với các câu hỏi độc đáo trong đề thi này. Chúc các bạn thành công!
Đề thi vào 10 môn Toán (chuyên Tin) năm 2021 2022 trường chuyên Hoàng Văn Thụ Hòa Bình
Nội dung Đề thi vào 10 môn Toán (chuyên Tin) năm 2021 2022 trường chuyên Hoàng Văn Thụ Hòa Bình Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên Tin) năm 2021-2022 trường chuyên Hoàng Văn Thụ Hòa Bình Đề thi vào 10 môn Toán (chuyên Tin) năm 2021-2022 trường chuyên Hoàng Văn Thụ Hòa Bình Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2021 – 2022 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bản chính thức do sở Giáo dục và Đào tạo tỉnh Hòa Bình công bố), kỳ thi diễn ra vào ngày 07 tháng 06 năm 2021. Một số câu hỏi trong đề thi bao gồm: 1. Trong mặt phẳng tọa độ Oxy, có parabol (P) có phương trình y = 2x^2 và đường thẳng (d): y = 4x – m + 1 (với m là tham số). Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x thỏa mãn hệ thức: 2x^2 + 4x - 1 = 0. 2. Hai cây nến có cùng chiều dài và khác nhau về chất liệu. Cây nến thứ nhất cháy hết trong 4 giờ, cây nến thứ hai cháy hết trong 6 giờ. Nếu đốt cùng một lúc, sau bao lâu phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất. 3. Cho đường tròn tâm O, bán kính R. Từ một điểm A ở ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm). Qua B kẻ đường thẳng song song với AO cắt đường tròn tại M, đường thẳng AM cắt đường tròn tại N, đường thẳng BN cắt AO tại I, AO cắt BC tại K. Những câu hỏi trên đều được biên soạn kỹ càng để đánh giá năng lực toán học của các bạn học sinh. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 2)
Nội dung Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 2) Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 2) Đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong Nam Định (Đề 2) Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 2). Đề thi này được thiết kế dành cho học sinh muốn theo học các lớp chuyên xã hội, với đầy đủ đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi: 1. Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh AP EF và AP // IK. Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng M là trung điểm của đoạn BC và HMC HAN. 2. Tìm tất cả các giá trị của tham số m để đường thẳng y mx 1 (m ≠ 0) và đường thẳng y x 9 2 song song. 3. Tính thể tích của hình nón có chiều cao bằng 4cm và bán kính đáy 3cm. File Word (dành cho quý thầy, cô): [đính kèm file Word] Đề thi này sẽ giúp các em học sinh ôn tập, kiểm tra và nâng cao kiến thức Toán của mình. Hy vọng rằng đề thi sẽ hữu ích và giúp các em chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công!
Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Quý Đôn Lai Châu
Nội dung Đề thi vào 10 môn Toán (chung) năm 2021 2022 trường chuyên Lê Quý Đôn Lai Châu Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chung) năm 2021-2022 trường chuyên Lê Quý Đôn Lai Châu Đề thi vào 10 môn Toán (chung) năm 2021-2022 trường chuyên Lê Quý Đôn Lai Châu Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2021-2022 tại trường chuyên Lê Quý Đôn, tỉnh Lai Châu. Đề thi bao gồm đáp án và lời giải chi tiết, kỳ thi diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn một số câu hỏi từ đề thi vào 10 môn Toán (chung) năm 2021-2022 trường chuyên Lê Quý Đôn - Lai Châu: 1. Một ô tô khách và một ô tô tải chở vật liệu xây dựng khởi hành cùng một lúc từ bến xe khách Lai Châu đến trung tâm thị trấn Mường Tè. Biết rằng do trọng tải lớn nên xe tải đi chậm hơn xe khách 10 km/h. Xe khách đến đích sớm hơn 1 giờ 6 phút so với xe tải. Hỏi vận tốc của mỗi xe khi biết quãng đường giữa hai điểm là 132 km. 2. Cho đường tròn (O;R), từ một điểm A trên đường tròn kẻ tiếp tuyến d với đường tròn tại điểm B. Trên đường thẳng d, lấy điểm M bất kì (khác A), kẻ tiếp tuyến MB. a. Chứng minh tứ giác AMBO nội tiếp đường tròn. b. Chứng minh AB^2 = OI^2 + IM^2 c. Tìm quỹ tích của điểm H trên trục tâm của tam giác MAB khi M di chuyển trên đường d. 3. Giải các phương trình và hệ phương trình trong đề thi.