Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 - 2023 phòng GD ĐT Lục Nam Bắc Giang Đề học sinh giỏi huyện lớp 7 môn Toán năm 2022 - 2023 phòng GD ĐT Lục Nam Bắc Giang Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 7 bộ đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang. Đề thi bao gồm 60% câu hỏi trắc nghiệm và 40% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi đi kèm đáp án và lời giải chi tiết, ngày thi dự kiến là 20/03/2023. Dưới đây là một số câu hỏi được trích dẫn từ Đề học sinh giỏi huyện Toán lớp 7 năm 2022 - 2023 phòng GD&ĐT Lục Nam - Bắc Giang: Một hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt tỉ lệ với 3; 2; 1. Biết chiều cao bằng 2cm. Hãy tính thể tích của hình hộp chữ nhật. Cho ba đường thẳng phân biệt a, b, c. Hai đường thẳng a và b song song với nhau khi: A. a và b cùng cắt với c B. a và b cùng vuông góc với c C. a vuông góc với c D. b vuông góc với c Trong các dữ liệu sau, dữ liệu nào là số liệu? A. Xếp loại của các học sinh cuối năm học. B. Số học sinh đi học muộn trong một buổi học. C. Danh sách học sinh đạt học sinh giỏi của một lớp. D. Địa chỉ của các công nhân trong một tổ sản xuất. Đề còn có các câu hỏi khác về tam giác vuông, các mối quan hệ hình học và tính chất của các hình học cơ bản. Vui lòng tải file WORD để xem đầy đủ nội dung và chi tiết của Đề học sinh giỏi huyện Toán lớp 7 năm 2022 - 2023.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho p và q là hai số nguyên tố lớn hơn 3 và thoả mãn p = q + 2. Tìm số dư khi chia p + q cho 12. + Cho A là một tập hợp gồm 10 chữ số. B là một tập con của A gồm 5 phần tử. Chứng minh rằng trong tập hợp các số có dạng x + y, với x, y là hai phần tử phân biệt thuộc B, có ít nhất 2 số có cùng chữ số hàng đơn vị. + Với mỗi số nguyên dương a, kí hiệu S(a) là số chữ số của a. Tìm số nguyên dương n để là số chẵn.
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC (AB < AC, góc B = 600). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. a) Tính AIC. b) Tính độ dài cạnh AK biết PK = 6cm, AH = 4 cm. c) Chứng minh IDE cân. + Tìm độ dài 3 cạnh của tam giác có chu vi bằng 13cm. Biết độ dài 3 đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. + Chứng minh rằng 10 là số vô tỉ.
Đề khảo sát HSG Toán 7 năm 2016 - 2017 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình : + Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Tìm số công nhân của mỗi nhóm. + Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 1. Tính số đo EOF và chứng minh OP = OQ. 2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. + Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 1. Chứng minh ABN = AMC và BN CM. 2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN.