Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Chúng tôi xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 của phòng GD&ĐT thành phố Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các em tham khảo. Chi tiết đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình: 1. Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Hãy tìm số công nhân của các nhóm. 2. Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 2.1. Tính số đo góc EOF và chứng minh OP = OQ. 2.2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. 3. Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 3.1. Chứng minh ABN = AMC và BN = CM. 3.2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN. Hãy cùng tham gia và thử sức với các bài toán thú vị này để nâng cao kiến thức và kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số nguyên. Biết rằng f(2), f(0), f(-2) đồng thời chia hết cho 3. Chứng minh a, b, c đều chia hết cho 3. + Tổng số học sinh ba lớp 7A, 7B, 7C của một trường THCS là 94 học sinh. Nếu chuyển 1 học sinh từ lớp 7A và 3 học sinh từ lớp 7B sang lớp 7C thì số học sinh của ba lớp 7A, 7B, 7C lần lượt tỉ lệ nghịch với 4; 5; 3. Tính số học sinh lúc đầu của mỗi lớp. + Cho tam giác ABC nhọn (AB < AC), kẻ tia phân giác AI (I thuộc BC) của góc BAC. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh IB = ID. b) Tia DI cắt tia AB tại E, tia AI cắt tia EC tại H. Chứng minh H là trung điểm của EC. 2) Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB (H thuộc AB). Chứng minh AC + BC < AB + CH.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho các số nguyên dương m, n và p là số nguyên tố thỏa mãn: p/(m – 1) = (m + n)/p. Chứng minh rằng: p2 = n + 2. + Biết f(x) chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f(x). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), trên tia đối của tia CA lấy điểm K sao cho CK = BD; DK cắt BC tại I. Hạ DP, KQ vuông góc với BC lần lượt tại P và Q. 1. Chứng minh rằng: BDP = CKQ; I là trung điểm DK. 2. Đường vuông góc với DK tại I cắt AM tại S. Chứng minh: SC vuông góc với AK. 3. Đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh rằng: MD + ME ≥ AD + AE.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiên Du – Bắc Ninh : + Tìm số nguyên n để số hữu tỉ (27 – 5n)/(n + 3) có giá trị là số nguyên. + Cho tam giác ABC nhọn. Bên ngoài tam giác ABC vẽ tam giác ABD vuông cân tại A và tam giác ACE vuông cân tại A. Gọi K là giao điểm của BE và CD. Gọi M là trung điểm của BC. a) Chứng minh BE = CD và BE vuông góc CD. b) Giả sử BC = 6cm. Tính độ dài đoạn KM. c) Gọi N là trung điểm của DE. Chứng minh AN vuông góc BC. + Cho 5 số nguyên dương và mỗi số chỉ có ước nguyên tố là 2 và 3. Chứng minh rằng có 2 số mà tích là một số chính phương.