Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ vuông góc trong không gian Toán 11 KNTTVCS

Tài liệu gồm 704 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề quan hệ vuông góc trong không gian trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTVCS), có đáp án và lời giải chi tiết. BÀI 22 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Xác định góc giữa hai đường thẳng. + Dạng 2. Hai đường thẳng vuông góc. BÀI 23 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2. Chứng minh hai đường thẳng vuông góc. + Dạng 3. Thiết diện. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lí thuyết. + Dạng 2. Đường thẳng vuông góc với mặt phẳng. + Dạng 3. Đường thẳng vuông góc với đường thẳng. + Dạng 4. Xác định thiết diện. BÀI 24 . PHÉP CHIẾU VUÔNG GÓC. GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng. Xác định góc giữa đường thẳng và mặt phẳng. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng. Góc của đường thẳng với mặt phẳng. BÀI 25 . HAI MẶT PHẲNG VUÔNG GÓC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa. + Dạng 2. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến. + Dạng 3. Xác định góc giữa hai mặt phẳng bằng cách dùng đinh lý hình chiếu. + Dạng 4. Chứng minh hai mặt phẳng vuông góc. + Dạng 5. Dùng mối quan hệ vuông góc giải bài toán thiết diện. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lí thuyết. + Dạng 2. Xác định quan hệ vuông góc giữa hai mp, mp và đt. + Dạng 3. Xác định góc giữa hai mặt phẳng. + Dạng 4. Dựng mặt phẳng vuông góc với mặt phẳng cho trước. Thiết diện, diện tích thiết diện. BÀI 26 . KHOẢNG CÁCH. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Khoảng cách từ một điểm tới một mặt phẳng. + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Bài tập trắc nghiệm trích từ đề thi tốt nghiệp THPT của Bộ GD&ĐT. + Bài tập trắc nghiệm tổng hợp. BÀI 27 . THỂ TÍCH. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. + Dạng 2. Thể tích khối chóp có hình chiếu của đỉnh là các điểm đặc biệt trên mặt đáy (không trùng với các đỉnh của đa giác đáy). + Dạng 3. Thể tích khối chóp đều. + Dạng 4. Thể tích khối lăng trụ đứng – đều. + Dạng 5. Thể tích khối lăng trụ xiên. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Bài tập trắc nghiệm trích từ đề thi tốt nghiệp THPT của Bộ GD&ĐT. + Dạng 1. Cạnh bên vuông góc với đáy. + Dạng 2. Mặt bên vuông góc với đáy. + Dạng 3. Thể tích khối chóp đều. + Dạng 4. Cạnh bên vuông góc với đáy. + Dạng 5. Mặt bên vuông góc với đáy. + Dạng 6. Thể tích khối chóp đều. + Dạng 7. Thể tích khối lăng trụ đứng. + Dạng 8. Thể tích khối lăng trụ xiên.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hai mặt phẳng vuông góc
Tài liệu gồm 49 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai mặt phẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Góc giữa hai mặt phẳng. 2) Hai mặt phẳng vuông góc. 3) Một số khối hình đặc biệt. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh hai mặt phẳng vuông góc. Để chứng minh hai mặt phẳng P và Q vuông góc với nhau ta sẽ chứng minh: + Một đường thẳng d nằm trong mặt phẳng P vuông góc với mặt phẳng Q hoặc một đường thẳng nào đó nằm trong mặt phẳng Q và vuông góc với mặt phẳng P. + Góc giữa hai mặt phẳng P và Q bằng 90o. Dạng 2 : Bài toán dựng thiết diện có yếu tố vuông góc. Dạng 3 : Xác định và tính góc giữa hai mặt phẳng. Loại 1: Góc giữa mặt bên và mặt đáy. Loại 2: Góc giữa hai mặt bên. Loại 3: Sử dụng công thức diện tích hình chiếu để tính góc giữa hai mặt phẳng.
Tài liệu chủ đề đường thẳng vuông góc với mặt phẳng
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề đường thẳng vuông góc với mặt phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Đường thẳng vuông góc với mặt phẳng. 2) Góc giữa đường thẳng và mặt phẳng. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh đường thẳng vuông góc với mặt phẳng. Để chứng minh đường thẳng d vuông góc với mặt phẳng P ta chứng minh: + d vuông góc với hai đường thẳng cắt nhau nằm trong P. + d song song với đường thẳng a mà a vuông góc với P. Dạng 2 : Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. + Muốn chứng minh đường thẳng a vuông góc với đường thẳng b, ta đi tìm mặt phẳng chứa đường thẳng b sao cho việc chứng minh a dễ thực hiện. + Sử dụng định lý ba đường vuông góc. Dạng 3 : Xác định và tính góc giữa đường thẳng và mặt phẳng. + Loại 1: Góc giữa cạnh bên và mặt đáy. + Loại 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao + Loại 3: Góc giữa đường cao và mặt bên. + Loại 4: Góc giữa cạnh bên và mặt bên (dạng toán nâng cao). Dạng 4 : Thiết diện vuông góc với một đường thẳng cho trước. Giả sử thiết diện là một phần của mặt phẳng P và P d. Khi đó ta tìm mặt trung gian dễ thấy và d // P và quy về thiết diện có yếu tố song song đã biết.
Tài liệu chủ đề hai đường thẳng vuông góc
Tài liệu gồm 25 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Tích vô hướng của hai vectơ trong không gian. 2) Góc giữa hai đường thẳng trong không gian. 3) Hai đường thẳng vuông góc. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.