Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào 10 môn Toán (chuyên Tin) 2022 - 2023 trường chuyên Hùng Vương - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Tin) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ : + Cho hai số thực a b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau 3 n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. + Cho tam giác ABC nội tiếp đường tròn (O) có đường cao 1 AA đường trung tuyến BB1 và đường phân giác trong 1 CC. Gọi DEF lần lượt là giao điểm của 11 1 AA BB CC với (O). Biết ABC 111 là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE N là trung điểm của đoạn thẳng CD I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA JF. + Chứng minh rằng nếu m n là hai số tự nhiên thỏa mãn 2 2 2022 2023 mm nn thì 2022 1 m n là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 trường THCS Văn Khê - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THCS Văn Khê, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 20 tháng 02 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 trường THCS Văn Khê – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai công nhân làm chung trong 12 ngày thì hoàn thành công việc đã định. Họ làm chung với nhau 4 ngày thì người thứ nhất được điều đi làm việc khác, người thứ hai làm công việc còn lại trong 10 ngày. Hỏi người thứ nhất làm một mình thì sau bao lâu hoàn thành công việc. + Tia nắng AB và bóng cột cờ HB tạo nên góc ABH = 30°. Biết BH = 14m. Tính chiều cao AH của cột cờ (làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại điểm H. Gọi K là trung điểm BC. a) Chứng minh tứ giác BFEC nội tiếp đường tròn và AE.AC = AF.AB. b) Chứng minh đường thẳng OA vuông góc với đường thẳng EF. c) Đường phân giác góc FHB cắt AB và AC lần lượt tại M và N. Gọi I là trung điểm của MN và J là trung điểm của AH. Chứng minh tứ giác AFHI nội tiếp và ba điểm I, J, K thẳng hàng.
Đề thi thử Toán vào lớp 10 lần 1 năm 2023 - 2024 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 16 tháng 01 năm 2023. Trích dẫn đề thi thử Toán vào lớp 10 lần 1 năm 2023 – 2024 trường Lương Thế Vinh – Hà Nội : + Một máy bay đang bay ở độ cao 10km, cách sân bay 100km và bắt đầu hạ cánh. Khi bay hạ cánh xuống mặt đất, đường đi của máy bay là một đường thẳng tạo một góc nghiêng so với mặt đất. Tính góc nghiêng đó (làm tròn đến chữ số thập phân thứ nhất). + Cho nửa đường tròn (O;R) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), vẽ hai tiếp tuyến Ax, By của nửa đường tròn. Từ điểm M thuộc nửa đường tròn (O) vẽ tiếp tuyến thứ ba cắt Ax, By lần lượt tại P và Q. a) Chứng minh bốn điểm A, P, M, O cùng nằm trên một đường tròn. b) AM cắt OP tại điểm I, BM cắt OQ tại điểm K. Chứng minh MIOK là hình chữ nhật và tính tích AP.BQ theo R. c) Gọi N là giao điểm của BP và IK. Chứng minh rằng khi M di chuyển trên nửa đường tròn (M khác A và B) thì tỉ số luôn không đổi. + Cho hai số thực x, y thỏa mãn: 0 ≤ x ≤ 6; 8 ≤ y ≤ 15 và x + y = 15. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 – xy + y2.
Đề thi thử vào 10 môn Toán năm 2023 - 2024 trường THCS Hoá Thượng - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THCS Hoá Thượng, huyện Đồng Hỷ, tỉnh Thái Nguyên; đề thi gồm 01 trang với 10 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề thi thử vào 10 môn Toán năm 2023 – 2024 trường THCS Hoá Thượng – Thái Nguyên : + Một khu vườn hình chữ nhật có chu vi là 280m. Người ta làm một lối đi xung quanh vườn (thuộc đất của vườn) rộng 2m, diện tích đất còn lại để trồng trọt là 4256m2. Tính kích thước của vườn. + Cho hai đường tròn (O;3) và (O’;a − 2) biết OO’ = 11. Tìm điều kiện của a để hai đường tròn (O) và (O’) tiếp xúc nhau. + Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ cát tuyến ABC với đường tròn (điểm B nằm giữa A và C). a) Chứng minh AN là tiếp tuyến của đường tròn. b) Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. Chứng minh OI.OK = ON2 và ba điểm K, H, N thẳng hàng.
Đề thi thử vào 10 môn Toán năm 2023 trường THCS Việt Ngọc - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THCS Việt Ngọc, huyện Tân Yên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 25 tháng 12 năm 2022. Trích dẫn Đề thi thử vào 10 môn Toán năm 2023 trường THCS Việt Ngọc – Bắc Giang : + Năm học 2022-2023, hai lớp 9A và 9B của trường THCS A có 63 học sinh. Tìm số học sinh của mỗi lớp, biết rằng nếu chuyển 3 học sinh của lớp 9A sang lớp 9B thì 4 lần số học sinh của lớp 9A bằng 5 lần số học sinh của lớp 9B. + Cho ∆ABC nhọn, nội tiếp (O), các đường cao AD và BE cắt nhau tại H (D thuộc BC, E thuộc AC), kẻ đường kính BOM. K là giao điểm của AC và MH. 1. Chứng minh tứ giác HECD là tứ giác nội tiếp. 2. Chứng minh OK vuông góc AC. 3. Cho số đo góc AOK bằng 600. Chứng minh ∆HBO cân. + Cho phương trình x2 + ax + a2 – 1 = 0 (ẩn x và tham số a). Tìm giá trị lớn nhất mà nghiệm của phương trình có thể đạt được.