Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL cuối kỳ 1 Toán 10 năm học 2018 - 2019 trường THPT Đoàn Thượng - Hải Dương

Đề KSCL cuối kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương mã đề 211 gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong thời gian 90 phút, đề nhằm kiểm tra và đánh giá năng lực môn Toán thường xuyên của học sinh khối 10 trong giai đoạn học kỳ 1. Trích dẫn đề KSCL cuối kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương : + Có ba lớp học sinh 10A, 10B, 10C trường THPT Đoàn Thượng – Hải Dương gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả ba lớp trồng được là 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh? A. 10A có 45 em, lớp 10B có 40 em, lớp 10C có 43 em. B. 10A có 43 em, lớp 10B có 40 em, lớp 10C có 45 em. C. 10A có 40 em, lớp 10B có 43 em, lớp 10C có 45 em. D. 10A có 45 em, lớp 10B có 43 em, lớp 10C có 40 em. [ads] + Viết mệnh đề phủ định P của mệnh đề P: ”Tất cả các học sinh khối 10 của trường em đều biết bơi”. A. P: ”Trong các học sinh khối 10 của trường em có bạn biết bơi”. B. P: ”Tất cả các học sinh khối 10 của trường em đều biết bơi”. C. P: ”Tất cả các học sinh khối 10 của trường em có bạn không biết bơi ”. D. P: ”Trong các học sinh khối 10 của trường em có bạn không biết bơi”. + Lớp 10B1 trường THPT Đoàn Thượng, Hải Dương có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B1 là?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF Nhằm mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán lớp 10 năm học 2018 – 2019 lần thứ 3. Đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc có mã đề 132, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm – đúng theo xu hướng thi toán trắc nghiệm hiện hành, đề thi gồm 6 trang, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội chơi A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a – b là? [ads] + Trong mặt phẳng Oxy, cho tam giác ABC có trung điểm của BC là M(2; 2), đường cao kẻ từ B đi qua điểm N(-2;-4), đường thẳng AC đi qua K(0;2) và điểm E(3;-3) là điểm đối xứng của A qua tâm đường tròn ngoại tiếp tam giác ABC. Biết C(a;b) với b < 0. Khi đó ab bằng? + Người ta dùng 120m2 rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được? File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh Bản PDF Ngày 18 tháng 05 năm 2019, trường THPT Lý Thái Tổ, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2018 – 2019 lần thứ 2. Đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(4;-3), B(2;5), C(5;4). 1) Viết phương trình tổng quát của đường thẳng BC. Tính diện tích tam giác ABC. 2) Viết phương trình đường tròn (T) ngoại tiếp tam giác ABC. 3) Tìm điểm M thuộc đường tròn (T) sao cho ME + 2MF đạt giá trị nhỏ nhất, với E(7;9), F(0;8). [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E) có tâm sai bằng √3/2, chu vi hình chữ nhật cơ sở bằng 12. Viết phương trình chính tắc của (E). Biết M là điểm di động trên (E), tính giá trị của biểu thức P = MF1^2 + MF2^2 – 5OM^2 – 3MF1MF2. + Cho tam giác nhọn ABC với H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là SABC và SHEK. Biết rằng SABC = 4SHEK, chứng minh tam giác ABC đều. File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán THPTQG lần 3 năm 2018 2019 trường Triệu Sơn 2 Thanh Hoá
Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S. File WORD (dành cho quý thầy, cô):