Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập chuyên đề tích phân và số phức vận dụng cao

Kỳ thi THPT Quốc gia từ năm 2016 – 2017, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong phần tích phân nói riêng. Trong phần tích phân nếu cho bài như phần tự luận thì học sinh có thể dùng máy tính cầm tay để cho kết quả dễ dàng. Do đó việc ra đề theo hình thức trắc nghiệm và hạn chế việc dùng máy tính cầm tay được ưu tiên trong toán THPT. Trong đề thi THPT Quốc gia môn Toán năm 2017, ta thấy xuất hiện một bài toán lạ về tích phân. Nó cũng rất thú vị khi giúp ta đi sâu tìm thêm về ứng dụng của tích phân. Trong tài liệu này xin giới thiệu với các bạn các bài toán liên quan đến so sánh các giá trị của hàm số y = f(x) khi biết đồ thị của hàm số y = f'(x). Phương pháp chung cho các bài toán như thế này, một cách tự nhiên ta thầy rằng để so sánh được các giá trị của hàm số thì sử dụng bảng biến thiên là đơn giản nhất, vì khi đó ta nhìn thấy được hàm số đồng biến hay nghịch biến. Ngoài ra ta kết hợp thêm phần diện tích của hình phẳng được giới hạn bởi các đường liên quan. Với mục đích giúp các em học sinh trung học phổ thông nói chung, các bạn học sinh đam mê Toán nói riêng có thêm tài liệu để tham khảo và chuẩn bị đầy đủ kiến thức cho kỳ thi THPT Quốc gia, nhóm giáo viên Toán học Bắc Trung Nam sưu tầm và biên soạn cuốn sách chuyên đề tích phân và số phức vận dụng cao, tài liệu này gồm 10 chuyên đề: [ads] Chuyên đề 1. Các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước. Chuyên đề 2. Các bài toán ước lượng giá trị của một hàm số khi cho trước các tích phân liên quan. Chuyên đề 3. Ứng dụng tích phân trong giải các bài toán liên quan đến so sánh giá trị của hàm số. Chuyên đề 4. Ứng dụng tích phân trong bài toán tính diện tích hình phẳng với dữ kiện toán thực tế. Chuyên đề 5. Ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế. Chuyên đề 6. Ứng dụng nguyên hàm, tích phân trong các bài toán thực tiễn khác. Chuyên đề 7. Bất đẳng thức tích phân và một số bài toán liên quan. Chuyên đề 8. Sử dụng phương pháp hình học giải bài toán số phức. Chuyên đề 9. Phương pháp đại số, lượng giác trong giải bài toán max – min số phức. Chuyên đề 10. Các bài toán số phức khác ở mức độ vận dụng cao.

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh nguyên hàm - tích phân và ứng dụng trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 22 trang, tuyển chọn 159 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT QG môn Toán
Tài liệu gồm 393 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT QG môn Toán: + Cho hai quả bóng A, B di chuyển ngược chiều nhau va chạm với nhau. Sau va chạm mỗi quả bóng nảy ngược lại một đoạn thì dừng hẳn. Biết sau khi va chạm, quả bóng A nảy ngược lại với vận tốc vA(t) = 8 − 2t (m/s) và quả bóng B nảy ngược lại với vận tốc vB(t) = 12 − 4t (m/s). Tính khoảng cách giữa hai quả bóng sau khi đã dừng hẳn (giả sử hai quả bóng đều chuyển động thẳng). + Người ta cần trồng một vườn hoa Cẩm Tú Cầu theo hình giới hạn bởi một đường Parabol và nửa đường tròn có bán kính √2 mét (phần tô trong hình vẽ). Biết rằng: để trồng mỗi m2 hoa cần ít nhất là 250000 đồng, số tiền tối thiểu để trồng xong vườn hoa Cẩm Tú Cầu gần bằng? [ads] + Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b) được tính theo công thức? + Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2 dm và 4 dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y =√(x − 1). Tính thể tích bình cắm hoa đó. + Cho hàm số y = f(x) có đồ thị f'(x) trên [−3; 2] như hình bên (phần cong của đồ thị là một phần của parabol y = ax^2 + bx + c). Biết f(−3) = 0, giá trị của f(−1) + f(1) bằng?
174 bài toán nguyên hàm, tích phân trong các đề thi thử THPTQG 2019 môn Toán
Tài liệu gồm 103 trang được biên soạn bởi thầy Nguyễn Hoàng Việt tổng hợp 174 bài toán nguyên hàm, tích phân và ứng dụng trong các đề thi thử THPTQG 2019 môn Toán, hỗ trợ học sinh trong quá trình học tập chủ đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Các bài toán nguyên hàm, tích phân và ứng dụng trong tài liệu đều ở dạng trắc nghiệm khách quan với 04 phương án lựa chọn và được phân loại thành 04 nhóm dựa vào các mức độ nhận thức: mức độ nhận biết, mức độ thông hiểu, mức độ vận dụng thấp và mức độ vận dụng cao, điều này giúp tài liệu phù hợp với đại đa số các nhóm học sinh khác nhau, và các em có thể nhanh chóng tìm kiếm các bài toán nguyên hàm, tích phân và ứng dụng phù hợp với năng lực của bản thân. Tất cả các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong tài liệu đều được có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu 174 bài toán nguyên hàm, tích phân trong các đề thi thử THPTQG 2019 môn Toán : + (Lý Thái Tổ – Bắc Ninh – KSGV – 2019) Mệnh đề nào sau đây sai? A. ∫kf(x)dx = k∫f(x)dx với mọi hằng số k và với mọi hàm số f(x) liên tục trên R. B. ∫f'(x)dx = f(x) + C với mọi hàm số f(x) có đạo hàm trên R. C. ∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx với mọi hàm số f(x), g(x) liên tục trên R. D. ∫[f(x) – g(x)]dx = ∫f(x)dx – ∫g(x)dx với mọi hàm số f(x), g(x) liên tục trên R. + (Yên Phong 1 – Bắc Ninh – KSGV – 2019) Cho hàm số f(x) xác định và liên tục trên đoạn [-5;3]. Biết rằng diện tích hình phẳng S1, S2, S3 giới hạn bởi đồ thị hàm số f(x) và đường parabol y = g(x) = ax^2 + bx + c lần lượt là m, n, p. + (Chuyên Đồng Bằng Sông Hồng – Cụm 8 trường – Lần 1 – 2019) Biết F(x) = (ax^2 + bx + c)e^-x là một nguyên hàm của hàm số f(x) = (2x^2 – 5x + 2)e^-x trên R. Giá trị của biểu thức f(F(0)) bằng?
Trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018
Tài liệu gồm 414 trang tổng hợp các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo 4 mức độ nhận thức, được phân tích và giải chi tiết. Trích dẫn tài liệu trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018 : + (THPT Quỳnh Lưu 1 – Nghệ An – Lần 2 năm 2017 – 2018) Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn (C): x^2 + (y – 3)^2 = 1 xung quanh trục hoành là? + (THPT Chuyên Hạ Long – Quảng Ninh lần 2 năm 2017 – 2018) Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số f1(x) và f2(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a, x = b (tham khảo hình vẽ dưới). Công thức tính diện tích của hình (H) là? [ads] + (THPT Mộ Đức-Quảng Ngãi – lần 1 năm 2017 – 2018) Trong hệ trục tọa độ Oxy, cho parabol (P): y = x^2 và hai đường thẳng y = a, y = b (0 < a < b) (hình vẽ). Gọi S1 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = a (phần tô đen); S2 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì S1 = S2?