Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học lớp 7 môn Toán Nguyễn Chín Em

Nội dung Tài liệu tự học lớp 7 môn Toán Nguyễn Chín Em Bản PDF - Nội dung bài viết Tài liệu tự học Toán lớp 7 Nguyễn Chín EmNội dung tài liệu tự học Toán lớp 7 Nguyễn Chín Em Tài liệu tự học Toán lớp 7 Nguyễn Chín Em Sytu trân trọng giới thiệu đến các thầy cô giáo và các em học sinh tài liệu tự học Toán lớp 7 do thầy Nguyễn Chín Em sưu tầm và biên soạn. Tài liệu bao gồm 381 trang, cung cấp đầy đủ lý thuyết từ sách giáo khoa, phân loại dạng toán và hướng dẫn giải các bài toán Đại số và Hình học thú vị. Nội dung tài liệu tự học Toán lớp 7 Nguyễn Chín Em PHẦN I. ĐẠI SỐ CHƯƠNG 1. SỐ HỮU TỈ. SỐ THỰC Dạng 1: Biểu diễn số hữu tỉ Dạng 2: So sánh hai số hữu tỉ Phép cộng, trừ số hữu tỉ Phép nhân, chia số hữu tỉ Giá trị tuyệt đối của một số hữu tỉ CHƯƠNG 2. HÀM SỐ VÀ ĐỒ THỊ Đại lượng tỉ lệ thuận và tỉ lệ nghịch Hàm số và đồ thị CHƯƠNG 3. THỐNG KÊ Thu thập số liệu thống kê Bảng tần số, biểu đồ Số trung bình cộng CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ Khái niệm về biểu thức đại số Đơn thức, đa thức Cộng trừ đa thức Đa thức một biến PHẦN II. HÌNH HỌC CHƯƠNG 1. ĐƯỜNG THẲNG VUÔNG GÓC, ĐƯỜNG THẲNG SONG SONG Hai góc đối đỉnh, đường thẳng vuông góc Hai đường thẳng song song CHƯƠNG 2. TAM GIÁC Tổng ba góc tam giác Hai tam giác bằng nhau Tam giác cân CHƯƠNG 3. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC Quan hệ giữa góc và cạnh đối diện Quan hệ giữa đường vuông góc và đường xiên Bất đẳng thức tam giác Với nội dung phong phú và cách trình bày rõ ràng, tài liệu tự học Toán lớp 7 Nguyễn Chín Em sẽ giúp các em học sinh nắm vững kiến thức cơ bản và rèn luyện kỹ năng giải các bài toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề cơ bản môn Toán 7 Kết Nối Tri Thức Với Cuộc Sống (tập 1)
Tài liệu gồm 96 trang, bao gồm lý thuyết và các dạng bài tập cơ bản chuyên đề môn Toán 7 Kết Nối Tri Thức Với Cuộc Sống (tập 1). Chương I . SỐ HỮU TỈ. Bài 1. Tập hợp các số hữu tỉ. Bài 2. Cộng, trừ, nhân, chia số hữu tỉ. Bài 3. Luỹ thừa với số mũ tự nhiên của một số hữu tỉ. Bài 4. Thứ tự thực hiện các phép tính. Quy tắc chuyển vế. Chương II . SỐ THỰC. Bài 5. Làm quen với số thập phân vô hạn tuần hoàn. Bài 6. Số vô tỉ. Căn bậc hai số học. Bài 7. Tập hợp các số thực. Chương III . GÓC VÀ ĐƯỜNG THẲNG SONG SONG. Bài 8. Góc ở vị trí đặc biệt. Tia phân giác của một góc. Bài 9. Hai đường thẳng song song và dấu hiệu nhận biết. Bài 10. Tiên đề Euclid. Tính chất của hai đường thẳng song song. Bài 11. Định lí và chứng minh định lí. Chương IV . TAM GIÁC BẰNG NHAU. Bài 12. Tổng các góc trong một tam giác. Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác. Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác. Bài 15. Các trường hợp bằng nhau của tam giác vuông. Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng. Chương V . THU THẬP VÀ BIỂU DIỄN DỮ LIỆU. Bài 17. Thu thập và phân loại dữ liệu. Bài 18. Biểu đồ hình quạt tròn. Bài 19. Biểu đồ đoạn thẳng.
Chuyên đề hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7
Tài liệu gồm 34 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết các yếu tố của lăng trụ đứng tam giác, tứ giác. + Học sinh vẽ hình, quan sát để xác định các mặt, các cạnh, các đỉnh. + Để vẽ hình lăng trụ đứng, ta thường vẽ một đáy, sau đó vẽ các cạnh bên là các đoạn thẳng song song và bằng nhau. Dạng 2. Tính diện tích, thể tích của hình lăng trụ đứng tam giác. + Diện tích xung quanh của hình lăng trụ đứng tam giác bằng tích của chu vi đáy với chiều cao của nó. + Diện tích toàn phần: Diện tích toàn phần bằng diện tích xung quanh cộng diện tích hai đáy. + Thể tích của hình lăng trụ đứng tam giác bằng diện tích đáy nhân với chiều cao. Dạng 3. Tính diện tích, thể tích của hình lăng trụ đứng tứ giác. + Diện tích xung quanh của hình lăng trụ đứng tứ giác bằng tích của chu vi đáy với chiều cao của nó. + Diện tích toàn phần: Diện tích toàn phần bằng diện tích xung quanh cộng diện tích hai đáy. + Thể tích của hình lăng trụ đứng tứ giác bằng diện tích đáy nhân với chiều cao. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề hình hộp chữ nhật và hình lập phương Toán 7
Tài liệu gồm 27 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hình hộp chữ nhật và hình lập phương trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Một số yếu tố cơ bản, diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật và hình lập phương. + Nhận dạng hình, xác định được các yếu tố liên quan của hình hộp chữ nhật và hình lập phương. + Viết các công thức liên quan (công thức tính diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật và hình lập phương). + Thay số, tính và kết luận. Dạng 2. Thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng các công thức tính thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng giải các bài toán thực tế có liên quan. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Toán 7
Tài liệu gồm 63 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. BA ĐƯỜNG TRUNG TRỰC Dạng 1. Xác định tâm đường tròn ngoại tiếp tam giác. – Dựa vào định nghĩa và sự đồng quy của ba đường trung trực trong tam giác. – Sử dụng tính chất giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. Dạng 2. Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. – Dựa vào định lí, tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. Dạng 3. Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. – Dựa vào tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. BA ĐƯỜNG CAO Dạng 1. Xác định trực tâm của một tam giác. – Để xác định trực tâm của một tam giác, ta cần tìm giao điểm hai đường cao của tam giác đó. – Dựa vào định nghĩa, định lí và nhận xét, tính chất về đường cao và sự đồng quy của ba đường cao trong tam giác. Dạng 2. Sử dụng tính chất trực tâm của tam giác để chứng minh hai đường thẳng vuông góc, ba đường thẳng đồng quy. – Nếu H là giao điểm hai đường cao kẻ từ B và C của tam giác ABC thì AH ⊥ BC. – Nếu ba đường thẳng là ba đường cao của một tam giác thì chúng cùng đi qua một điểm. Dạng 3. Vận dụng tính chất ba đường cao trong tam giác để giải quyết các bài toán khác. – Dựa vào định lí, tính chất về sự đồng quy của ba đường cao trong tam giác. PHẦN III . BÀI TẬP TỰ LUYỆN.