Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 2021 trường chuyên Hà Nội Amsterdam

Thứ Tư ngày 11 tháng 11 năm 2020, trường THPT chuyên Hà Nội – Amsterdam, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021. Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Một chiếc thang dài 7m dựa vào bức tường thẳng đứng, tạo với mặt đất một góc 50°. Nếu đẩy chân của chiếc thang đó gần về phía tường đến khi thang tạo với mặt đất góc 65° (xem hình vẽ), hỏi đầu thang ở trên tường đã dịch chuyển lên một đoạn là bao nhiêu? (kết quả các phép tính lấy hai chữ số sau dấu phẩy). + Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR. + Cho a, b là các số thực trái dấu thỏa mãn a^2 >= ab + 2b^2. Tìm giá trị lớn nhất của biểu thức P = (a^2 + 2b^2)/ab.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4)
Nội dung Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Bản PDF - Nội dung bài viết Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) bao gồm 1 trang với 4 bài toán dạng tự luận. Học sinh có thời gian làm bài trong 150 phút. Kỳ thi này được tổ chức nhằm giúp học sinh ôn tập và chuẩn bị cho kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Trích dẫn một số câu hỏi từ đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4): Với a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Hãy tìm giá trị lớn nhất của biểu thức P = a/(1 + a^2) + b/(1 + b^2) – c/(1 + c^2). Đề cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Tiếp tuyến qua B, C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E, F. Câu hỏi đặt ra bao gồm việc chứng minh hai tam giác OEF và ABC đồng dạng, chứng minh rằng DJ || BC với J là tâm đường tròn ngoại tiếp tam giác OEF, và chứng minh rằng AT chia đôi đoạn thẳng OK với K là trực tâm tam giác OEF. Với x > 1, chứng minh rằng từ tập con A có n + 2 số của tập {1, 2, 3 ... 3n} luôn có thể chọn ra 2 số mà hiệu của chúng lớn hơn n và nhỏ hơn 2n. Đề thi thử này không chỉ giúp học sinh quen với cấu trúc và dạng bài trong kỳ thi sắp tới, mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phản xạ nhanh nhạy trong việc giải các bài toán phức tạp.
Đề thi khảo sát lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Ba Đình Hà Nội
Nội dung Đề thi khảo sát lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình Hà Nội Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình Hà Nội Đề thi khảo sát Toán lớp 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình - Hà Nội có 1 trang với 5 bài toán tự luận. Thời gian làm bài là 90 phút, kỳ thi được tổ chức vào ngày 03/03/2018 nhằm giúp học sinh khối 9 tại các trường THCS Phan Chu Trinh và THCS Mạc Đĩnh Chi (Hà Nội) chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề thi cung cấp lời giải chi tiết cho từng bài toán. Trích dẫn đề thi khảo sát Toán lớp 9: Bài 1: Để hoàn thành một công việc theo dự định, cần một số công nhân làm trong một số ngày nhất định. Nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới hoàn thành. Nếu tăng thêm 5 công nhân, công việc sẽ hoàn thành sớm 4 ngày. Hỏi cần bao nhiêu công nhân và làm bao nhiêu ngày? Bài 2: Giải phương trình x^2 - 2(m - 1)x - m^2 + m - 1 = 0 (x là ẩn số). a) Giải phương trình với m = 2. b) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi số thực m. Bài 3: Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H. 1. Chứng minh tứ giác BKHN là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHN. 2. Chứng minh góc KBH = KCA. 3. Gọi E là trung điểm của cạnh AC. Chúng minh KE là tiếp tuyến của đường tròn (I). 4. Đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc với ME. Đề thi này cung cấp cơ hội cho học sinh lớp 9 rèn luyện kỹ năng giải các bài toán Toán, từ đơn giản đến phức tạp, nhằm nâng cao kiến thức và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10.
Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1)
Nội dung Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Bản PDF - Nội dung bài viết Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Đề thi thử Toán lớp 9 năm 2018 trường THPT chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) là bài thi gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 120 phút. Đề thi được thiết kế nhằm đánh giá năng lực học tập môn Toán của học sinh lớp 9, cũng như giúp các em chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Đề thi có lời giải chi tiết để học sinh có thể tự kiểm tra và rút kinh nghiệm sau khi làm bài. Ví dụ về một câu hỏi trong đề thi: "Giả sử số nguyên dương n có tính chất: có tồn tại một cách sắp xếp a1, a2, … , a2n của 2n số 1, 1, 2, 2, …, n, n sao cho với mỗi k = 1, 2, … , n luôn tồn tại đúng k số xếp giữa hai số k. Chứng minh rằng n^2 + n chia hết cho 4." Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội mang đến cơ hội để học sinh thử sức và nâng cao kỹ năng giải bài toán. Các câu hỏi được thiết kế logic, đa dạng và có độ khó tăng dần, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Đề thi đồng thời cũng là cơ hội tốt để học sinh ôn tập kiến thức và rèn luyện kỹ năng làm bài chuẩn xác.