Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hậu Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hậu Giang : + Hiện nay, tổng số tuổi của chú và cháu là 91 tuổi. Biết rằng số tuổi của chú hiện nay gấp đôi số tuổi của cháu vào thời điểm mà số tuổi của chú bằng số tuổi của cháu hiện nay. Tìm số tuổi của chú và số tuổi của cháu hiện nay. + Tìm số tự nhiên n có 4 chữ số sao cho tổng của chữ số hàng nghìn và chữ số hàng trăm của n bằng 15, đồng thời n chia hết cho 2, 5 và 9. + Cho đường tròn (O;R) và hai dây cung AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F lần lượt là giao điểm của MC và MD với dây AB. Gọi I và J lần lượt là giao điểm của DE và CF với đường tròn (O). Chứng minh rằng AI = BJ.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2014 - 2015 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2014 – 2015 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 04 tháng 03 năm 2015; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2014 – 2015 sở GD&ĐT Ninh Bình : + Cho 3 số thực không âm x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức A = 2 2 2 22 2 232 232 32 x xy y y yz z z zx x. + Cho đường tròn tâm O, dây cung BC cố định. Điểm A trên cung nhỏ BC, A không trùng với B, C và điểm chính giữa của cung nhỏ BC. Gọi H là hình chiếu của A trên đoạn thẳng BC; E, F thứ tự là hình chiếu của B và C trên đường kính AA’. Chứng minh rằng: a) Hai tam giác HEF và ABC đồng dạng với nhau. b) Hai đường thẳng HE và AC vuông góc với nhau. c) Tâm đường tròn ngoại tiếp tam giác HEF là điểm cố định khi A chuyển động trên cung nhỏ BC. + Cho tam giác ABC vuông cân đỉnh A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2013 - 2014 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2013 – 2014 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2014; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2013 – 2014 sở GD&ĐT Ninh Bình : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx – 2 và parabol (P) có phương trình y 2 x 4. Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B. Tìm các giá trị của m để đoạn AB có độ dài nhỏ nhất. + Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C, D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng: a) AC.HF AD.CF b) F là trung điểm của EH c) Hai đường thẳng DC và DI đối xứng với nhau qua đường thẳng DN. + Cho n và k là các số tự nhiên 4 2k 1 An 4. a) Tìm k, n để A là số nguyên tố. b) Chứng minh rằng: + Nếu n không chia hết cho 5 thì A chia hết cho 5. + Với p là ước nguyên tố lẻ của A ta luôn có p – 1 chia hết cho 4.