Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng

Nội dung Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng. Đề thi này bao gồm đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Đề thi gồm nhiều câu hỏi khó và phức tạp như: Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? Cho các số nguyên dương abc thỏa mãn 222 abc. Chứng minh rằng ab chia hết cho: abc. Đề thi này đòi hỏi sự kiên nhẫn, quan sát kỹ lưỡng và kỹ năng giải quyết vấn đề linh hoạt của các thí sinh. Chúc các em học sinh lớp 9 đạt kết quả cao trong kỳ thi HSG môn Toán cấp quận năm học 2022 - 2023 này!

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 9. CLB Văn Hóa Toán trường THCS Cầu Giấy sẽ tổ chức đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 2 trong năm học 2023-2024. Kỳ thi sẽ diễn ra vào ngày thứ Năm, ngày 21 tháng 09 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: - Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Hãy tìm giá trị lớn nhất của biểu thức P = 3a + ab + abc. - Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Chứng minh rằng FE là phân giác của góc BFD và kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. - Xét tập T = {1; 2; 3; ...; 10}. Hãy chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x - y.
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 1). Trích dẫn các câu hỏi trong đề thi: Giải bất phương trình: x² - 9x + 14 < 0. Chứng minh rằng với mọi số nguyên n thì n³ + 3n² + 2018n chia hết cho 6. Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Tứ giác BEDF là hình gì, vì sao? Chứng minh rằng: a) CHK đồng dạng BCA. b) AB.AH + AD.AK = AC². Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H. Giả sử HK = AK/3. Chứng minh rằng tanB.tanC = 3. Đây là một đề thi thách thức và đa dạng, giúp các em học sinh lớp 9 rèn luyện khả năng suy luận, tư duy logic và phát triển khả năng giải quyết vấn đề. Hy vọng các em sẽ vượt qua thử thách này một cách xuất sắc và tự tin.
Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị
Nội dung Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán THCS năm 2023 - 2024 Đề học sinh giỏi Toán THCS năm 2023 - 2024 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi văn hóa cấp THCS môn Toán năm học 2023 - 2024 do phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị tổ chức. Đề thi bao gồm các câu hỏi thú vị và đa dạng, nhằm khuyến khích sự sáng tạo và tư duy logic của các em. Dưới đây là một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là hình chiếu của B, D lên đường chéo AC và G, H lần lượt là hình chiếu của A, C lên đường chéo BD. Biết rằng 4 điểm E, F, G, H tạo thành một tứ giác. Chứng minh tứ giác đó cũng là một hình bình hành. Câu 2: Cho tam giác ABC vuông tại C có CB = 3CA. Gọi D, E là các điểm trên cạnh BC sao cho CD = DE = EB. Chứng minh rằng ADC + AEC + ABC = 90°. Câu 3: Các số nguyên dương được chia vào các tập hợp S1, S2, S3, S4... như sau: S = {1}, S2 = {2;3}, S3 = {4;5;6}, S4 = {7;8;9;10} và cứ thế tiếp tục. Hỏi phần tử nhỏ nhất và phần tử lớn nhất của tập S2023 là bao nhiêu? Đề thi này sẽ giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và nâng cao kiến thức Toán của mình. Chúc các em thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Triệu Phong Quảng Trị
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Triệu Phong Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023-2024 Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023-2024 Chào quý thầy cô và các em học sinh lớp 9, đây là đề thi chọn học sinh giỏi văn hóa môn Toán lớp 9 năm học 2023-2024 do Phòng Giáo dục và Đào tạo huyện Triệu Phong, tỉnh Quảng Trị tổ chức. Đề thi bao gồm các câu hỏi sau: 1. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên đường chéo AC. Đường thẳng qua E và song song với AB cắt BC tại F. Gọi G là điểm đối xứng với C qua F, chứng minh rằng EG song song với đường chéo BD. 2. Cho tam giác ABC vuông cân tại A có AM là đường trung tuyến (M thuộc BC). Đường thẳng qua B và vuông góc với phân giác trong của góc MAC cắt AC, AM lần lượt tại D, E. Chứng minh CD = 2ME. 3. Một hình tròn được chia thành 6 hình quạt tròn. Tóm viết lần lượt lên 6 hình quạt đó các số 2, 0, 2, 3, 0, 9 theo chiều kim đồng hồ, mỗi hình quạt được viết 1 số. Jerry có thể cộng thêm 1 đơn vị cho mỗi số ở 2 hình quạt tròn kề nhau bất kỳ. Hãy xác định xem Jerry có thể cộng thêm như vậy để được các số ở 6 hình quạt tròn bằng nhau hay không? Chúc quý thầy cô và các em học sinh hoàn thành tốt đề thi và đạt kết quả cao trong kỳ thi học sinh giỏi Toán lớp 9 năm 2023-2024. Để biết rõ hơn về từng câu hỏi và cách giải, hãy cùng tham gia vào bài thi và trải qua những trải nghiệm ý nghĩa!