Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 2 Toán 11 năm 2023 - 2024 trường chuyên Trần Phú - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2023 – 2024 trường THPT chuyên Trần Phú, thành phố Hải Phòng. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Trích dẫn Đề cuối học kỳ 2 Toán 11 năm 2023 – 2024 trường chuyên Trần Phú – Hải Phòng : + Cho tập A 1 2 3 4 5 6 7 8. Gọi S là tập hợp các số tự nhiên có 3 chữ số khác nhau được lập từ tập A. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có tổng các chữ số là chẵn. + Một lớp có hai tổ, mỗi tổ có 16 học sinh. Tổ 1 có 10 bạn nam, 6 bạn nữ. Tổ 2 có 9 bạn nam, 7 bạn nữ. Chọn ngẫu nhiên ở mỗi tổ một bạn. Xét tính đúng, sai của các mệnh đề sau: A. Xác suất chọn được bạn nữ trong tổ 1 là 3 8. B. Xác suất chọn được hai bạn nữ là 21 248. C. Xác suất chọn được một bạn nam và một bạn nữ thuộc khoảng 0 4 0 5. D. Xác suất chọn được ít nhất một bạn nữ thuộc khoảng 0 8 0 9. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cho AB a BC a 3 SA a và SA vuông góc với mặt phẳng ABCD. Xét tính đúng, sai của các mệnh đề sau: A. SA vuông góc với AB. B. BC vuông góc với mặt phẳng SAB. C. Mặt phẳng SAB vuông góc với mặt phẳng SAC. D. Đặt là góc giữa đường thẳng SC và ABCD. Giá trị của tan bằng 1 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.