Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề trắc nghiệm mặt cầu, hình cầu và khối cầu

Tài liệu gồm 53 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề mặt cầu, hình cầu và khối cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Mặt cầu. 2. Khối cầu. 3. Mặt cầu ngoại tiếp khối đa diện. 4. Mặt cầu ngoại tiếp khối đa diện. 5. Vị trí tương đối giữa mặt cầu và mặt phẳng. 6. Vị trí tương đối giữa mặt cầu và đường thẳng. 7. Diện tích mặt cầu và thể tích khối cầu. 8. Một số công thức tính nhanh bán kính đường tròn ngoại tiếp. II. CÁC DẠNG TOÁN THƯỜNG GẶP VỀ MẶT CẦU + Dạng 1: Những bài toán vận dụng mức cơ bản. + Dạng 2: Đa diện có các đỉnh cùng nhìn một đoạn nối hai đỉnh còn lại dưới góc vuông. + Dạng 3: Bài toán mặt cầu với chóp có cạnh bên vuông góc đáy. + Dạng 4: Bài toán về mặt cầu với hình chóp có mặt bên vuông góc với đáy. + Dạng 5: Bài toán mặt cầu của hình chóp có các cạnh bên bằng nhau. + Dạng 6: Hình chóp bất kì (bài toán Tổng quát – Nâng cao). + Dạng 7: Bài toán mặt cầu của một số tứ diện đặc biệt. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

50 câu trắc nghiệm mặt cầu, mặt trụ, mặt nón - Trần Công Diêu
Tài liệu gồm 29 trang tuyển tập 50 bài toán trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón do thầy Trần Công Diêu biên soạn, các bài toán đều có đáp án và được giải chi tiết. Trích dẫn tài liệu : + Cho hình lập phương ABCD.A’B’C’D’. Gọi O’, O là tâm của 2 hình vuông A’B’C’D’ và ABCD và O’O = a. Gọi V1 là thể tích của hình trụ tròn xoay đáy là 2 đường tròn ngoại tiếp các hình vuông ABCD, A’B’C’D’ và V2 là thể tích hình nón tròn xoay đỉnh O’ và đáy là đường tròn nội tiếp hình vuông ABCD. Tỉ số thể tích V1/V2 là? [ads] + Cho ∆ABC vuông cân tại C, nội tiếp trong đường tròn tâm O, đường kính AB. Xét điểm S nằm ngoài mặt phẳng (ABC) sao cho SA, SB, SC tạo với (ABC) góc 45 độ. Hãy chọn câu đúng: A. Hình nón đỉnh S, đáy là đường tròn ngoại tiếp ∆ABC là hình nón tròn xoay B. Thiết diện qua trục của hình nón là tam giác vuông cân C. Khoảng cách từ O đến 2 thiết diện qua đỉnh ( SAC ) và ( SBC ) bằng nhau D. Cả 3 câu trên đều đúng + Cho hình nón tròn xoay có thiết diện qua đỉnh là 1 tam giác vuông cân. Hãy chọn câu sai trong các câu sau: A. Đường cao bằng tích bán kính đáy B. Đường sinh hợp với đáy góc 450 C. Đường sinh hợp với trục góc 450 D. Hai đường sinh tuỳ ý thì vuông góc với nhau
88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay - Nguyễn Tất Thu
Tài liệu gồm 13 trang tuyển chọn 88 câu trắc nghiệm thể tích khối đa diện và mặt tròn xoay, tài liệu do thầy Nguyễn Tất Thu biên soạn. Trích dẫn tài liệu : + Trong các mệnh đề sau, mệnh đề nào sai? A. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì bằng nhau B. Hai khối hộp chữ nhật có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau C. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau có thể tích bằng nhau D. Hai khối hộp lập phương có cùng diện tích toàn phần bằng nhau thì có thể tích bằng nhau [ads] + Cho ba điểm A, B, C cùng thuộc một mặt cầu và cho biết góc ACB = 90 độ. Ta đưa ra các khẳng định sau: 1: Đường tròn đi qua ba điểm A,B,C nằm trên mặt cầu 2: AB là một đường kính của mặt cầu đã cho 3: AB không là đường kính của mặt cầu đã cho 4: AB là đường kính của đường tròn giao tuyến tạo bởi mặt cầu và mặt phẳng (ABC) Trong các khẳng đỉnh trên, những khẳng định nào đúng? A. 1, 2   B. 2, 4 C. 1, 4   D. 2, 3 + Trong các mệnh đề sau, mệnh đề nào sai? A. Mặt trụ và mặt nón chứa các đường thẳng B. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau C. Luôn có hai đường tròn có bán kính khác nhau cũng nằm trên một mặt nón D. Mọi hình chóp luôn nội tiếp trong mặt cầu.
65 câu trắc nghiệm chuyên đề mặt tròn xoay - Lê Bá Bảo
Tài liệu gồm 10 trang tuyển tập 65 bài toán trắc nghiệm chuyên đề mặt tròn xoay do thầy Lê Bá Bảo biên soạn. Trích dẫn tài liệu : + Một hình trụ tròn xoay có bán kính đáy R = 1. Trên hai đường tròn đáy, (O) và (O’), tương ứng lấy 2 điểm A, B sao cho AB = 2, góc giữa AB và trục OO’ bằng 30 độ. Xét hai khẳng định sau: (I) Khoảng cách giữa OO’ và AB bằng √3/2 (II) Thể tích khối trụ là V = √3 A. Chỉ (I) đúng B. Chỉ (II) đúng C. Cả 2 câu đều sai D. Cả 2 câu đều đúng [ads] + Cho tam giác ABC vuông cân tại C, nội tiếp trong đường tròn tâm O, đường kính AB. Xét điểm S nằm ngoài mặt phẳng (ABC) sao cho SA, SB, SC tạo với mặt phẳng (ABC) một góc 45 độ. Hãy chọn khẳng định đúng trong các khẳng định sau. A. Hình tròn xoay đỉnh S, đáy là đường tròn ngoại tiếp tam giác ABC là hình nón tròn xoay B. Thiết diện qua trục của hình nón là tam giác vuông cân C. Khoảng cách từ O đến 2 thiết diện qua đỉnh S, là mặt phẳng (SAC) và (SBC) bằng nhau D. Cả ba khẳng định trên đều đúng + Câu 24. Cho điểm M nằm trong mặt cầu (S). Mệnh đề nào sau đây sai? A. Mọi mặt phẳng đi qua M đều cắt (S) theo một đường tròn B. Có một mặt phẳng đi qua M không cắt (S) C. Mọi mặt phẳng đi qua M đều cắt (S) tại hai điểm phân biệt D. Đường thẳng đi qua M và tâm O của mặt cầu cắt (S) tại hai điểm đối xứng nhau qua O
350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó