Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Hoàng Hoa Thám Đà Nẵng

Nội dung Đề cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường THPT Hoàng Hoa Thám Đà Nẵng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Hoàng Hoa Thám, thành phố Đà Nẵng; đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề 101 – 102 – 103 – 104. Trích dẫn Đề cuối kì 2 Toán lớp 10 năm 2022 – 2023 trường THPT Hoàng Hoa Thám – Đà Nẵng : + Hãng hàng không Quốc gia VietNam Airlines khai thác duy nhất một chuyến bay từ Đà Nẵng đi Đà Lạt vào ngày 30 tháng 4 với các loại vé khác nhau được mô tả bởi sơ đồ hình cây sau đây: Một người muốn mua vé của hãng máy bay VietNam Airlines đi từ Đà Nẵng đến Đà Lạt vào ngày 30 tháng 4. Hỏi có bao nhiêu loại vé để người đó lựa chọn? + Vòm cửa của một công ty X có dạng hình parabol với khoảng cách giữa hai chân vòm là AB m 6 và chiều cao bằng 4 m (tính từ đỉnh của parabol đến mặt đất). Người ta thiết kế hai cánh cửa bằng kính cường lực có dạng hình chữ nhật MNPQ với hai đỉnh M, N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất (như hình vẽ). Biết chiều cao cánh cửa là MQ m 3 và khe hở giữa hai cánh cửa là không đáng kể. Tính diện tích phần mặt kính cường lực làm cửa MNPQ. + Đội tuyển Giáo dục Quốc phòng của một trường Trung học phổ thông A có 9 học sinh gồm 2 học sinh lớp 10, 3 học sinh lớp 11 và 4 học sinh lớp 12. Thầy giáo muốn xếp đội tuyển thành một đội hình hàng ngang sao cho giữa 2 học sinh lớp 10 không có học sinh nào lớp 11. Hỏi có bao nhiêu cách xếp hàng như vậy? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Giải các bất phương trình sau. + Trong mặt phẳng Oxy, cho tam giác ABC biết: A B C. a) Viết phương trình tham số đường thẳng qua hai điểm A, B. b) Viết phương trình tổng quát đường thẳng d là trung trực của đoạn BC. c) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng Oxy, cho đường tròn 2 2 C x y x y 12 6 44 0 và đường thẳng 4 3 12 0 x y. a) Tìm tâm và bán kính đường tròn (C). b) Viết phương trình tổng quát đường thẳng d tiếp xúc với đường tròn (C) tại điểm M thuộc đường tròn. c) Viết phương trình tổng quát đường thẳng d’ vuông góc với và tiếp xúc với đường tròn (C).
Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC với A B C. a) Viết phương trình tham số và phương trình tổng quát của đường cao. b) Viết phương trình tổng quát của đường thẳng BC. Tìm tọa độ điểm H. + Trong mặt phẳng với hệ trục Oxy, cho A B C. a) Viết phương trình đường tròn (S) có tâm B và đi qua điểm C. b) Viết phương trình đường tròn (T) ngoại tiếp tam giác ABC. Viết phương trình tiếp tuyến với (T) tại C. + Giải hệ bất phương trình.