Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp tính thể tích khối đa diện

Tài liệu gồm 34 trang hướng dẫn các phương pháp tính thể tích khối đa diện và các bài tập vận dụng. §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG ĐL1:Nếu đường thẳng d không nằm trên mp (P) và song song với đường thẳng a nằm trên mp (P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp (P) thì mọi mp (Q) chứa a mà cắt mp (P) thì cắt theo giao tuyến song song với a ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó §2.HAI MẶT PHẲNG SONG SONG ĐL1: Nếu mp (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song [ads] §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp (P) thì đường thẳng d vuông góc với mp (P) ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp (P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P) §2.HAI MẶT PHẲNG VUÔNG GÓC ĐL1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q) ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm thể tích khối chóp
Tài liệu gồm 48 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối chóp, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Thể tích khối chóp có đường cao sẵn có. Dạng 2: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3: Thể tích khối chóp đều. + Khối chóp tam giác đều. + Khối chóp tứ giác đều. Dạng 4: Thể tích một số khối chóp đặc biệt. + Khối chóp có các cạnh bên bằng nhau. + Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau. + Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải
Tài liệu gồm 74 trang, được biên soạn bởi tác giả Phùng Hoàng Em, tuyển tập 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng: Câu 1. Thể tích của một khối chóp có diện tích đáy bằng 4 dm2 và chiều cao bằng 6 dm là? Câu 2. Thể tích của một khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h là? Câu 3. Tính thể tích V của khối lập phương có cạnh bằng 2cm. Câu 4. Tính thể tích khối lăng trụ tam giác đều ABC.A0B0C0 biết tất cả các cạnh của lăng trụ đều bằng a. Câu 5. Tính thể tích V của khối lăng trụ ABC.A0B0C0 biết thể tích của khối chóp C0.ABC bằng a3. Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy (ABCD) và SA = a. Tính thể tích V của khối chóp S.ABCD. Câu 7. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Tính thể tích khối tứ diện OABC. Câu 8. Gọi V1 là thể tích của khối lập phương ABCD.A0B0C0D0, V2 là thể tích khối tứ diện A0ABD. Hệ thức sào sau đây là đúng? Câu 9. Thể tích khối tứ diện đều cạnh a√3 bằng? Câu 10. Tổng diện tích các mặt của một hình lập phương bằng 150. Thể tích của khối lập phương đó là?
Toàn cảnh khối đa diện và thể tích trong đề THPT môn Toán của Bộ GDĐT (2016 - 2021)
Tài liệu gồm 109 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập 113 bài toán chuyên đề khối đa diện và thể tích khối đa diện trong các đề thi tham khảo, đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm 2016 đến năm 2021, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1 và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Tài liệu được phân chia ra 03 phần cho học sinh dễ theo dõi: phần đề bài (trang 01) để học sinh tự làm, phần bảng đáp án (trang 41) để học sinh dò kết quả và phần đáp án – lời giải chi tiết (trang 42). Trích dẫn tài liệu toàn cảnh khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2016 – 2021): + Câu 25 – MĐ 102 – BGD&ĐT – Năm 2016 – 2017: Mặt phẳng AB C chia khối lăng trụ ABC A B C thành các khối đa diện nào? Ⓐ. Một khối chóp tam giác và một khối chóp ngũ giác. Ⓑ. Một khối chóp tam giác và một khối chóp tứ giác. Ⓒ. Hai khối chóp tam giác. Ⓓ. Hai khối chóp tứ giác. + Câu 45 – MĐ 102 – BGD&ĐT – Đợt 2 – Năm 2019 – 2020: Cho hình chóp đều S ABCD có cạnh đáy bằng 4a, cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? Gọi E F K H lần lượt là trung điểm của AB BC CD DA và M N P Q lần lượt là hình chiếu vuông góc của O trên SE SF SK SH M N P Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD SDA. Ta có 2 2 2 2 SO SD OD a a a OE OF OK OH 2 3 2 2 2 các tam giác SOE SOF SOK SOH vuông cân tại O và bằng nhau nên M N P và Q lần lượt là trung điểm của của SE SF SK SH MNPQ là hình vuông cạnh a 2. Mặt khác ta có OM ON OP OQ a 2 O MNPQ là hình chóp đều có tất cả các cạnh bằng a 2 nên có đường cao bằng 2 2 1 a a a. Khi đó thể tích của khối chóp O MNPQ bằng 3 1 2 2 3 3. + Câu 47 – MĐ 101 – BGD&ĐT – Năm 2017 – 2018: Trong không gian Oxyz, cho mặt cầu S có tâm I và đi qua điểm A. Xét các điểm B C D thuộc S sao cho AB AC AD đôi một vuông góc với nhau. Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng? Lời giải: Chọn D. Ta có: Dựng hình hộp chữ nhật ABEC DFGH. I là tâm mặt cầu ngoại tiếp A BCD. I là trung điểm của AG. Dấu đẳng thức xảy ra x y z 6. Vậy max 36 VABCD.
Chuyên đề thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 127 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp kiến thức cần nhớ, các dạng toán kèm phương pháp giải và bài tập chuyên đề thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích của chúng và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu chuyên đề thể tích khối đa diện – Lê Minh Tâm: I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP + Dạng toán 1. CHÓP CÓ CẠNH BÊN VUÔNG GÓC VỚI ĐÁY (Trang 6). + Dạng toán 2. CHÓP CÓ MẶT BÊN VUÔNG GÓC VỚI ĐÁY (Trang 8). + Dạng toán 3. CHÓP ĐỀU (Trang 11). + Dạng toán 4. TỶ SỐ THỂ TÍCH (Trang 14). + Dạng toán 5. TỔNG HIỆU THỂ TÍCH (Trang 18). + Dạng toán 6. THỂ TÍCH LĂNG TRỤ ĐỨNG (Trang 24). + Dạng toán 7. THỂ TÍCH LĂNG TRỤ XIÊN (Trang 29). + Dạng toán 8. THỂ TÍCH KHỐI LẬP PHƯƠNG – KHỐI HỘP (Trang 33). + Dạng toán 9. KHỐI ĐA DIỆN ĐƯỢC CẮT RA TỪ KHỐI LĂNG TRỤ (Trang 37). + Dạng toán 10. MAX – MIN THỂ TÍCH (Trang 44). III. BÀI TẬP RÈN LUYỆN IV. BẢNG ĐÁP ÁN THAM KHẢO