Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp tính thể tích khối đa diện

Tài liệu gồm 34 trang hướng dẫn các phương pháp tính thể tích khối đa diện và các bài tập vận dụng. §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG ĐL1:Nếu đường thẳng d không nằm trên mp (P) và song song với đường thẳng a nằm trên mp (P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp (P) thì mọi mp (Q) chứa a mà cắt mp (P) thì cắt theo giao tuyến song song với a ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó §2.HAI MẶT PHẲNG SONG SONG ĐL1: Nếu mp (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song [ads] §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp (P) thì đường thẳng d vuông góc với mp (P) ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp (P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P) §2.HAI MẶT PHẲNG VUÔNG GÓC ĐL1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q) ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Hình học không gian - Lưu Huy Thưởng
Tài liệu gồm 55 trang trình bày lý thuyết, phân dạng, phương pháp giải toán và các bài tập chuyên đề hình học không gian. KIẾN THỨC CƠ BẢN 1. Xác định một mặt phẳng + Ba điểm không thẳng hàng thuộc mặt phẳng. + Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. + Hai đường thẳng cắt nhau thuộc mặt phẳng. 2. Một số qui tắc vẽ hình biểu diễn của hình không gian + Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. + Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. + Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. + Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. CÁC DẠNG TOÁN THƯỜNG GẶP §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng toán 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui. Dạng toán 4. Xác định thiết diện của một hình chóp với một mặt phẳng (đi qua 3 điểm). [ads] §2. HAI ĐƯỜNG THẲNG SONG SONG Dạng toán 1. Chứng minh hai đường thẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh đường thẳng song song với mặt phẳng. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §4. HAI MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh hai mặt phẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §5. HAI ĐƯỜNG THẲNG VUÔNG GÓC §6. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Dạng toán 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Chứng minh hai đường thẳng vuông góc. Dạng toán 2. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng. Dạng toán 3. Góc giữa đường thẳng và mặt phẳng. §7. HAI MẶT PHẲNG VUÔNG GÓC Dạng toán 1. Góc giữa hai mặt phẳng. Dạng toán 2. Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng toán 3. Tính diện tích hình chiếu của đa giác. §8. KHOẢNG CÁCH Dạng toán 1. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng. Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. §9. THỂ TÍCH KHỐI ĐA DIỆN Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. Dạng toán 2. Khối chóp có mặt bên vuông góc với đáy. Dạng toán 3. Khối chóp đều. Dạng toán 4. Phương pháp tỷ số thể tích. §10. THỂ TÍCH KHỐI LĂNG TRỤ Dạng toán 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy. Dạng toán 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng toán 3. Lăng trụ đứng có góc giữa hai mặt phẳng. Dạng toán 4. Khối lăng trụ xiên. TUYỂN TẬP ĐỀ THI ĐẠI HỌC CÁC NĂM
Nắm trọn chuyên đề thể tích khối đa diện ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 464 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. Dạng 1: Mở đầu về thể tích khối đa diện. Dạng 2: Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 3: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 4: Thể tích khối chóp đều. Dạng 5: Tổng hợp về thể tích khối chóp. Dạng 6: Tỷ số thể tích khối chóp. Dạng 7: Thể tích khối lăng trụ đứng. Dạng 8: Thể tích khối đa diện đều. Dạng 9: Thể tích khối lăng trụ xiên. Dạng 10: Tỷ số thể tích khối lăng trụ. Dạng 11: Góc, khoảng cách liên quan đến thể tích khối đa diện. Dạng 12: Cực trị khối đa diện.
Chuyên đề trắc nghiệm tỉ số thể tích
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tỉ số thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM 1. Kỹ thuật đổi đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số thể tích của khối chóp. 4. Tỉ số thể tích của khối lăng trụ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Tỉ số thể tích của khối chóp. + Dạng 2: Tỉ số thể tích khối lăng trụ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối lăng trụ
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối lăng trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Thể tích khối lăng trụ đứng. + Dạng 2: Thể tích khối lăng trụ xiên. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.