Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức - Nguyễn Chín Em

Tài liệu gồm 308 trang được biên soạn bởi thầy Nguyễn Chín Em tổng hợp lý thuyết, dạng toán và bài tập trắc nghiệm – tự luận các chủ đề liên quan đến chuyên đề số phức trong chương trình Giải tích 12 chương 4; các bài tập trong tài liệu được phân loại và sắp xếp theo độ khó tăng dần với 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề số phức – Nguyễn Chín Em: CHỦ ĐỀ 1 . DẠNG ĐẠI SỐ CỦA SỐ PHỨC VÀ CÁC PHÉP TOÁN. A TÓM TẮT LÝ THUYẾT 1 Định nghĩa. 2 Hai số phức bằng nhau. 3 Biểu diễn hình học của số phức. 4 Mô-đun của số phức. 5 Số phức liên hợp. 6. Cộng, trừ, nhân, chia số phức. B DẠNG TOÁN VÀ BÀI TẬP Dạng 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 3. Tính giá trị của biểu thức. Dạng 4. Bài toán sử dụng bất đẳng thức trong số phức. C CÂU HỎI TRẮC NGHIỆM [ads] CHỦ ĐỀ 2 . BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC VÀ BÀI TOÁN LIÊN QUAN. A KIẾN THỨC CƠ BẢN B BÀI TẬP VẬN DỤNG Dạng 1. Tập hợp điểm của số phức là đường thẳng và các bài toán liên quan. Dạng 2. Tập hợp điểm của số phức là đường tròn, hình tròn, hình vành khăn. Dạng 3. Tập hợp điểm của số phức là elíp. Dạng 4. Bài toán liên quan đến giá trị lớn nhất, giá trị nhỏ nhất. Dạng 5. Sử dụng bình phương vô hướng. Dạng 6. Sử dụng hình chiếu và tương giao. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 3 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. A KIẾN THỨC CƠ BẢN 1 Căn bậc hai của số phức. 2 Phương trình bậc hai trên tập số phức. B CÁC DẠNG TOÁN Dạng 1. Phương trình bậc hai với hệ số phức. Dạng 2. Tìm các thuộc tính của số phức thỏa mãn điều kiện K. Dạng 3. Biểu diễn hình học của số phức và bài toán liên quan. Dạng 4. Phương trình bậc hai và bậc cao trong số phức. Dạng 5. Phương trình quy về bậc hai. Dạng 6. Dạng lượng giác của số phức. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chủ đề số phức ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 148 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề số phức ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định các yếu tố cơ bản, biểu diễn hình học số phức. DẠNG 2 Bài toán quy về giải phương trình, hệ phương trình và điểm biểu diễn số phức. DẠNG 3 Các phép toán số phức. DẠNG 4 Phép chia số phức. DẠNG 5 Phương trình bậc hai hệ số thực. DẠNG 6 Cực trị số phức. DẠNG 7 Số phức trong đề thi của Bộ Giáo dục và Đào tạo. DẠNG 8 Một số bài toán số phức chọn lọc.
Toàn tập số phức cơ bản
Tài liệu gồm 58 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề số phức cơ bản lớp 12 THPT, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 4. Toàn tập số phức cơ bản : + Dạng đại số số phức cơ bản p1. + Dạng đại số số phức cơ bản p2. + Dạng đại số số phức cơ bản p3. + Dạng đại số số phức cơ bản p4. + Dạng đại số số phức cơ bản p5. + Dạng đại số số phức cơ bản p6. + Dạng đại số số phức cơ bản p7. + Dạng đại số số phức cơ bản p8. + Quỹ tích số phức cơ bản p1. + Quỹ tích số phức cơ bản p2. + Quỹ tích số phức cơ bản p3. + Quỹ tích số phức cơ bản p4. + Quỹ tích số phức cơ bản p5. + Quỹ tích số phức cơ bản p6. + Quỹ tích số phức cơ bản p7. + Quỹ tích số phức cơ bản p8. + Phương trình phức cơ bản p1. + Phương trình phức cơ bản p2. + Phương trình phức cơ bản p3. + Phương trình phức cơ bản p4. + Phương trình phức cơ bản p5. + Phương trình phức cơ bản p6. + Phương trình phức cơ bản p7. + Phương trình phức cơ bản p8. + Tổng hợp số phức cơ bản p1. + Tổng hợp số phức cơ bản p2. + Tổng hợp số phức cơ bản p3. + Tổng hợp số phức cơ bản p4. + Tổng hợp số phức cơ bản p5. + Tổng hợp số phức cơ bản p6. + Tổng hợp số phức cơ bản p7. + Tổng hợp số phức cơ bản p8. + Tổng hợp số phức cơ bản p9. + Tổng hợp số phức cơ bản p10.
Sử dụng phương pháp hình học giải bài toán tìm GTLN GTNN môđun số phức
Tài liệu gồm 27 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn sử dụng phương pháp hình học giải bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) môđun số phức, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 4: Số phức; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Điểm Torricelli: Cho tam giác ABC có góc lớn nhất không quá 120. Điểm Torricelli của tam giác ABC là điểm T nằm trong ABC và có tổng 3 cạnh TA TB TC p q r nhỏ nhất. Để tìm ra điểm này, ta dựng 3 tam giác đều ACM BCN ABO giao điểm của 3 đường tròn ngoại tiếp của 3 tam giác đều này (hoặc giao điểm của AN BM CO) chính là điểm Torricelli mà chúng ta cần tìm. 2. Bất đẳng thức Cauchy – Schwarz: Với hai dãy số thực 1 2 m a a a và 1 2 m b b b ta luôn có bất đẳng thức sau 1 2 1 2 1 1 2 2 m m m m a a a b b b a b a b a b. Dấu bằng xảy ra khi 1 2 2 2 m m a a a b b b. 3. Định lý Ptoleme hay đẳng thức Ptoleme là một đẳng thức trong hình học Euclid miêu tả quan hệ giữa độ dài bốn cạnh và hai đường chéo của một tứ giác nội tiếp. Định lý này mang tên nhà toán học và thiên văn học người Hy Lạp cổ đại Ptolemy (tức Claudius Ptolemaeus). Nếu A, B, C, và D là 4 đỉnh của tứ giác nội tiếp đường tròn thì: AC BD AB CD BC AD. 4. Bất đẳng thức Ptoleme là trường hợp tổng quát của định lý Ptoleme đối với một tứ giác bất kỳ. Nếu ABCD là tứ giác bất kỳ thì AC BD AB CD BC AD. Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn. 5. Định lí Stewart: Gọi a, b và c là độ dài các cạnh của 1 tam giác. Gọi d là độ dài của đoạn thẳng nối từ 1 đỉnh của tam giác với điểm nằm trên cạnh (ở đây là cạnh có độ dài là a) đối diện với đỉnh đó. Đoạn thẳng này chia cạnh a thành 2 đoạn có độ dài m và n định lý Stewart nói rằng: 2 2 2 b m c n a d mn. B. BÀI TẬP
Sử dụng phương pháp đại số, lượng giác giải bài toán tìm GTLN - GTNN môđun số phức
Tài liệu gồm 19 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn sử dụng phương pháp đại số, lượng giác giải bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất (GTLN – GTNN / max – min) môđun số phức, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 4: Số phức; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Định nghĩa. 2. Bất đẳng thức tam giác. 3. Bất đẳng thức AM – GM. 4. Bất đẳng thức Bunyakovsky. B. BÀI TẬP Kĩ thuật 1: Đánh giá hai modun với nhau. Kĩ thuật này chúng ta tận dụng các phép đánh giá a b a b a b a b. Kĩ thuật 2: Dùng các bất đẳng thức đại số. Kĩ thuật này chúng ta tận dụng các phép đánh giá: Với 1 2 … n a a a không âm ta luôn có 1 2 1 2 n n n a a a n a a a. Dấu bằng xảy ra khi 1 2 … n a a a a b a b a b. Dấu bằng xảy ra khi 1 2 1 2 n a a a b b b. Kĩ thuật 3: Dồn biến. Kĩ thuật này chúng ta đi theo hướng: Với số phức ở dạng đại số từ đề bài ta đi tìm mối liên hệ giữa phần thực và phần ảo. Nếu làm được điều này ta sẽ dồn về một biến. Từ đề bài chúng ta đánh giá về một môđun có thể là |z|. Kĩ thuật 4: Lượng giác hóa. Kĩ thuật 5: Sử dụng biểu thức liên hợp.