Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và Bảng B); kỳ thi được diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho các số thực dương x, y, z thỏa mãn x2 − y2 + z2 = xy + 3yz + zx. Tìm giá trị lớn nhất của biểu thức P. + Cho nửa đường tròn (O), đường kính BC = 2R và một điểm A thay đổi trên nửa đường tròn đó (A không trùng với B và C). Vẽ AH vuông góc với BC tại H. Gọi I, J lần lượt là tâm đường tròn nội tiếp các tam giác AHB và AHC. Đường thẳng IJ cắt AB, AC theo thứ tự tại M và N. a) Chứng minh tam giác AMN vuông cân. b) Gọi P là giao điểm của BI và CJ. Chứng minh. c) Tìm giá trị lớn nhất của chu vi tam giác HIJ theo R. + Trên một khu đất hình chữ nhật kích thước 100m × 120m. Người ta muốn xây một sân bóng nhân tạo có nền đất là hình chữ nhật kích thước 25m × 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng dù xây trước 9 bồn hoa ở các vị trí như thế nào thì trên phần đất còn lại luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Giang. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Giang : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn 16×4 – y4 = 9y2 + 16. + Tìm tất cả các số nguyên tố p sao cho 7p2 – 2 và 13p2 – 12 là các số nguyên tố. + Cho điểm M nằm ngoài đường tròn tâm O, kẻ hai tiếp tuyến MA, MB với đường tròn (O) (với A, B là các tiếp điểm). Đường thẳng đi qua M cắt đường tròn (O) tại C, D sao cho C nằm giữa M và D. a) Chứng minh MA2 = MC.MD. b) Gọi H là trung điểm của đoạn CD, đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh BE song song với CD. c) Gọi AA’ là đường kính của đường tròn (O); A’C và A’D cắt đường thẳng MO lần lượt tại P và Q. Chứng minh O là trung điểm của đoạn thẳng PQ.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Tư ngày 30 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT TP Hồ Chí Minh : + Cho đường tròn (O), đường kính AB cố định. Gọi C là điểm di động trên (O) (C khác A và B), vẽ đường kính CD của đường tròn (O). Tiếp tuyến tại B của đường tròn (O) cắt hai đường thẳng AC, AD lần lượt tại E và F. Gọi H là trung điểm của đoạn thẳng BF; K là giao điểm của hai đường thẳng OE và AH. a) Chứng minh năm điểm E, C, D, F, K cùng thuộc một đường tròn. b) Gọi I là tâm của đường tròn ngoại tiếp tứ giác ECDF. Chứng minh điểm I luôn thuộc một đường thẳng cố định khi C di động trên đường tròn (O). + Qua điểm M thuộc cạnh BC của tam giác ABC ta kẻ các đường thẳng song song với các cạnh AB, AC; chúng tạo thành với hai cạnh ấy một hình bình hành. Tìm vị trí của M để hình bình hành đó có diện tích lớn nhất. + Tìm tất cả các cặp số tự nhiên (m;n) với m >= n sao cho A = (m + n)3 là ước của B = 2n(3m2 + n2) + 8.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 04 năm 2022.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT Cầu Ngang - Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Cầu Ngang, tỉnh Trà Vinh. Trích dẫn đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT Cầu Ngang – Trà Vinh : + Cho tam giác ABC cân tại A (BAC = 90°) biết đường cao AD và trực tâm H. Tính độ dài AD biết AH = 14cm và BH = CH = 30cm. + Quãng đường AB gồm một đoạn lên dốc dài 4km và một đoạn xuống dốc dài 5km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc. + Cho tam giác đều ABC nội tiếp đường tròn (O). Trên cung BC không chứa điểm A ta lấy điểm P bất kỳ (P khác B và P khác C). Các đoạn PA và BC cắt nhau tại Q. a) Giả sử D là một điểm trên đoạn PA sao cho PD = PB. Chứng minh rằng tam giác PDB đều b) Chứng minh rằng PA = PB + PC c) Chứng minh hệ thức 1/PQ = 1/PB + 1/PC.