Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp chứng minh bất đẳng thức

Tài liệu gồm 702 hướng dẫn các kỹ thuật và phương pháp chứng minh bất đẳng thức (Đại số 10 chương 4) kèm các ví dụ và bài tập bất đẳng thức có lời giải chi tiết. Các phương pháp chứng minh bất đẳng thức được đề cập trong tài liệu: Chương I . MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN + Chủ đề 1. Kỹ thuật biến đổi tương đương + Chủ đề 2. Sử dụng các tính chất của tỉ số, tính chất giá trị tuyệt đối và tính chất của tam thức bậc hai trong chứng minh bất đẳng thức 1. Sử dụng tính chất của tỉ số 2. Sử dụng tính chất giá trị tuyệt đối 3. Sử dụng tính chất tam thức bậc hai. + Chủ đề 3. Chứng minh bất đẳng thức bằng phương pháp phản chứng + Chủ đề 4. Chứng minh các bất đẳng thức về tổng, tích của dãy số – Phương pháp quy nạp + Chủ đề 5 Kỹ thuật sử dụng bất đẳng thức CAUCHY 1. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình cộng sang trung bình nhân 2. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình nhân sang trung bình cộng. 3. Kỹ thuật ghép cặp trong bất đẳng thức Cauchy 4. Kỹ thuật thêm bớt 5. Kỹ thuật Cauchy ngược dấu 6. Kỹ thuật đổi biến số + Chủ đề 6 Kỹ thuật sử dụng bất đẳng thức BUNHIACOPXKI 1. Kỹ thuật chọn điểm rơi 2. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản 3. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức 4. Kỹ thuật thêm bớt 5. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki [ads] Chương II . MỘT SỐ KỸ THUẬT GIẢI TOÁN ĐẶC SẮC + Chủ đề 7. Ứng dụng nguyên lý DIRICHLET trong chứng minh bất đẳng thức + Chủ đề 8. Phương pháp hệ số bất định trong chứng minh bất đẳng thức + Chủ đề 9. Ứng dụng một hệ quả của bất đẳng thức SCHUR + Chủ đề 10. Ứng dụng của đạo hàm trong chứng minh bất đẳng thức và bài toán tìm cực trị 1. Dồn biến nhờ vận dụng kỹ thuật sử dụng các bất đẳng thức kinh điển 2. Dồn biến nhờ kết hợp với kỹ thuật đổi biến số 3. Dồn biến nhờ kết hợp với kỹ thuật sắp thứ tự các biến 4. Phương pháp tiếp tuyến 5. Khảo sát hàm nhiều biến số 6. Kết hợp với việc sử dụng Bổ đề 7. Vận dụng kỹ thuật dồn biến cổ điển Chương III . TUYỂN CHỌN MỘT SỐ BÀI TOÁN BẤT ĐẲNG THỨC + Chủ đề 11. Một số bất đẳng thức hay và khó + Chủ đề 12. Một số bất đẳng thức trong các đề thi học sinh giỏi, thi TSĐH và tuyển sinh lớp 10 chuyên toán

Nguồn: toanmath.com

Đọc Sách

12 phương pháp chứng minh bất đẳng thức - Lớp 10 chuyên Toán Quảng Bình (2012 - 2015)
Trong môn Toán ở trường THPT, bất đẳng thức ngày càng được quan tâm đúng mức và tỏ ra có sức hấp dẫn mạnh mẽ nhờ vẽ đẹp và tính độc đáo của phương pháp và kỹ thuật giải chúng cũng như yêu cầu cao về tư duy cho người giải. Bất đẳng thức là một trong những dạng toán hay và khó đối với học sinh trong quá trình học tập cũng như trong các kỳ thi, trước hết là kỳ thi đại học mà hầu hết học sinh THPT đều phải vượt qua. Ngoài ra bất đẳng thức cũng là một dạng thường gặp trong các kỳ thi học sinh giỏi toán ở các cấp tỉnh, Quốc gia, Olympic khu vực và Olympic quốc tế. Các bài toán bất đẳng thức không những rèn luyện tư duy sáng tạo, trí thông minh mà còn đem lại say mê và yêu thích môn Toán của người học. Trong đề tài nghiên cứu khoa học này, tập thể lớp 10 Toán trường THPT Chuyên Quảng Bình xin trình bày một số vấn đề về bất đẳng thức, một số phương pháp chứng minh bất đẳng thức. Đề tài gồm các bài viết của các nhóm tác giả được trình bày dưới dạng các chuyên đề. [ads] 1. Bất đẳng thức AM – GM và ứng dụng 2. Bất đẳng thức Minkowski và ứng dụng 3. Bất đẳng thức Holder và ứng dụng 4. Bất đẳng thức Cauchy – Schwarz 5. Bất đẳng thức Chebyshev 6. Bất đẳng thức Muirhead 7. Phương pháp PQR 8. Phương pháp phân tích tổng bình phương S.O.S 9. Sử dụng phương pháp S.O.S trong chứng minh bất đẳng thức 10. Phương pháp dồn biến 11. Sử dụng tiếp tuyến trong việc chứng minh bất đẳng thức 12. Phương pháp nhân tử Lagrange
Phân dạng các bài toán bất đẳng thức và min - max - Mẫn Ngọc Quang
Tài liệu Phân dạng các bài toán bất đẳng thức và min – max của thầy giáo Mẫn Ngọc Quang gồm 160 trang là tuyển tập các bài toán bất đẳng thức và min – max đặc sắc được phân thành 13 dạng khác nhau dựa theo phương pháp giải. §1. Các bất đẳng thức phụ chứng minh bất đẳng thức §2. Bất đẳng thức ba biến đối xứng điểm rơi đẹp §3. Các bất đẳng thức phụ quen thuộc §4. Bất đẳng thức ba biến không đối xứng §5. Bất đẳng thức dồn về tổng a + b + c §6. Bất đẳng thức xử lý cụm x^2.y + y^2.z + z^2.x §7. Bất đẳng thức xử lý cụm xyz §8. Bất đẳng thức sử dụng tiếp tuyến §9. Bất đẳng thức sử dụng đặt ẩn phụ [ads] §10. Bất đẳng thức có biên bằng 0 §11. Bất đẳng thức sử dụng phương pháp thế §12. Bất đẳng thức Mincopxky §13. Bất đẳng thức có giả thiết đồng bậc §14. Bất đẳng thức đồng bậc §15. Phương pháp cố định biến số §16. Bất đẳng thức có hiệu a – b §17. Phương pháp lượng giác hóa và vectơ §18. Phương pháp ép biến
Tư duy dồn biến trong bất đẳng thức - Đoàn Trí Dũng vs Hà Hữu Hải
Tài liệu Tư duy dồn biến trong bất đẳng thức của 2 thầy Đoàn Trí Dũng và Hà Hữu Hải gồm 18 trang với 13 bài toán bất đẳng thức được xử lý bằng phương pháp dồn biến. Tài liệu này được sử dụng trong khóa học 24h học toán – chiến thắng 3 câu phân loại. I. Giới thiệu cơ bản về bất đẳng thức Cauchy (AM – GM) II. Các hệ quả của bất đẳng thức Cauchy (AM – GM) III. Sử dụng bất đẳng thức AM – GM đưa về biến cần tìm [ads]
Kĩ thuật sử dụng bất đẳng thức Cô-si - Nguyễn Cao Cường
NHỮNG QUY TẮC CHUNG TRONG CHỨNG MINH BẤT ĐẲNG THỨC SỬ DỤNG BẤT ĐẲNG THỨC CÔ SI + Quy tắc song hành: hầu hết các BĐT đều có tính đối xứng do đó việc sử dụng các chứng minh một cách song hành, tuần tự sẽ giúp ta hình dung ra được kết quả nhanh chóng và định hướng cách giả nhanh hơn. + Quy tắc dấu bằng: dấu bằng “ = ” trong BĐT là rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh. Nó định hướng cho ta phương pháp giải, dựa vào điểm rơi của BĐT. Chính vì vậy mà khi dạy cho học sinh ta rèn luyện cho học sinh có thói quen tìm điều kiện xảy ra dấu bằng mặc dù trong các kì thi học sinh có thể không trình bày phần này. Ta thấy được ưu điểm của dấu bằng đặc biệt trong phương pháp điểm rơi và phương pháp tách nghịch đảo trong kỹ thuật sử dụng BĐT Cô Si. [ads] + Quy tắc về tính đồng thời của dấu bằng: không chỉ học sinh mà ngay cả một số giáo viên khi mới nghiên cứu và chứng minh BĐT cũng thương rất hay mắc sai lầm này. Áp dụng liên tiếp hoặc song hành các BĐT nhưng không chú ý đến điểm rơi của dấu bằng. Một nguyên tắc khi áp dụng song hành các BĐT là điểm rơi phải được đồng thời xảy ra, nghĩa là các dấu “ = ” phải được cùng được thỏa mãn với cùng một điều kiện của biến. + Quy tắc biên: Cơ sở của quy tắc biên này là các bài toán quy hoạch tuyến tính, các bài toán tối ưu, các bài toán cực trị có điều kiện ràng buộc, giá trị lớn nhất nhỏ nhất của hàm nhiều biến trên một miền đóng. Ta biết rằng các giá trị lớn nhất, nhỏ nhất thường xảy ra ở các vị trí biên và các đỉnh nằm trên biên. + Quy tắc đối xứng: các BĐT thường có tính đối xứng vậy thì vai trò của các biến trong BĐT là như nhau do đó dấu “ = ” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có gắn hệ điều kiện đối xứng thì ta có thể chỉ ra dấu “ = ” xảy ra khi các biến bằng nhau và mang một giá trị cụ thể. Chiều của BĐT : “ ≥ ”, “ ≤ ” cũng sẽ giúp ta định hướng được cách chứng minh: đánh giá từ TBC sang TBN và ngược lại. Trên là 5 quy tắc sẽ giúp ta có định hướng để chứng minh BĐT, học sinh sẽ thực sự hiểu được các quy tắc trên qua các ví dụ và bình luận ở phần sau.