Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Phan Ngọc Hiển - Cà Mau

Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 106 gồm 10 câu trắc nghiệm và 04 câu tự luận, đề thi gồm 02 trang, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong mặt phẳng chứa hệ trục tọa độ Oxy, cho hai điểm A(−2;1), B(2;3) và đường thẳng ∆: x − 2y − 1 = 0. a) Viết phương trình tham số của đường thẳng d đi qua hai điểm A và B. b) Viết phương trình đường tròn có tâm A và tiếp xúc với đường thẳng ∆. [ads] + Tìm các giá trị m nguyên để bất phương trình (m + 1)x^2 – 2(m + 1)x + 3 < 0 vô nghiệm với mọi x thuộc R. + Trong các đường thẳng có phương trình sau, đường thẳng nào cắt đường thẳng d: 2x – 3y – 8 = 0.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong mặt phẳng Oxy, cho hai điểm M và N. Viết phương trình đường tròn C có đường kính MN. + Trong mặt phẳng Oxy, cho điểm I(1;2) và đường thẳng d. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. + Chứng minh rằng (khi các biểu thức có nghĩa).
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường Quốc tế Á Châu - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Cho tam giác ABC có BC = a, AC = b = 2, C = 30. Tính cạnh AB, góc A và diện tích tam giác ABC. + Trong mặt phẳng hệ trục tọa độ Oxy cho điểm A(2;-3), điểm B(1;2) và hai đường thẳng d1 và d2. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng d1. c) Tìm tọa độ điểm M đối xứng với B qua d2. + Giải các bất phương trình sau.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Đông Dương - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Đông Dương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Đông Dương – TP HCM : + Cho tam giác ABC có cạnh CB = 7cm, AC = 10cm, góc C có số đo 600. Tính cạnh AB, diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC. + Cho phương trình bậc hai ẩn x, tham số m. Tìm giá trị của m để phương trình có hai nghiệm dương phân biệt. + Hai cung lượng giác khi biểu diễn trên đường tròn lượng giác thì có điểm cuối trùng nhau hay không? Vì sao?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thanh Đa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thanh Đa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thanh Đa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm N, M và đường thẳng d. a) Viết phương trình tham số của đường thẳng d. b) Viết phương trình tổng quát của đường thẳng MN. c) Viết phương trình đường thẳng d’ đi qua điểm N và vuông góc với d. d) Tính khoảng cách từ điểm N đến đường thẳng d. + Cho f(x) với m là tham số. Tìm tất cả các giá trị của tham số m để f(x) > 0. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình. Tìm tọa độ tâm I và tính bán kính R của đường tròn C.