Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Quảng Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng NamĐề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng Nam Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam. Đề thi này bao gồm đáp án và lời giải chi tiết, kỳ thi sẽ diễn ra vào ngày 03 - 05 tháng 06 năm 2021. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Cho parabol (P): y^2 = 2x và đường thẳng (d): y = mx + m^2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho điểm M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Hãy tính độ dài đoạn thẳng KH. Cho hình vuông ABCD có tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh rằng HD là tia phân giác của góc AHC. b) Chứng minh rằng diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh rằng tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh rằng CI vuông góc với KM.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Điện Biên
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Điện Biên tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Điện Biên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Điện Biên : + Một con Robot được thiết kế có thể đi thẳng, quay một góc 90 sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 2m quay sang trái rồi đi thẳng 3m, quay sang phải rồi đi thẳng 5m đến đích tại vị trí B. Tính khoảng cách giữa đích đến và nơi xuất phát của Robot. + Cho phương trình: x2 – 5mx – 4m = 0 (với m là tham số). a) Tìm tất cả các giá trị của m để phương trình có nghiệm kép, tìm nghiệm đó. b) Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì: x1^2 + 5mx2 + m^2 + 14m + 1 > 0. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Đường cao AD, BE cắt nhau tại H. Kéo dài BE, AO cắt đường tròn (O) lần lượt tại F và M. a) Chứng minh ∆HAF cân. b) Gọi I là trung điểm của BC. Chứng minh ba điểm H, I, M thẳng hàng và AH = 2OI. c) Khi BC cố định, xác định vị trí của A trên đường tròn (O) để DH.DA lớn nhất.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Thuận
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Thuận tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho hàm số y = mx + n có đồ thị là (d). Tìm giá trị m và n biết (d) song song với đường thẳng (d’): y = x + 3 và đi qua điểm M (2;4). + Lớp 9A có 80 quyển vở dự định khen thưởng học sinh giỏi cuối năm. Thực tế cuối năm tăng thêm 2 học sinh giỏi, nên mỗi phần thưởng giảm đi 2 quyển vở so với dự định. Hỏi cuối năm lớp 9A có bao nhiêu học sinh giỏi, biết mỗi phần thưởng có số quyển vở bằng nhau. [ads] + Cho nửa đường tròn (O) đường kính AB = 2R. Trên đoạn thẳng OB lấy điểm M (M khác O và B). Trên nửa đường tròn (O) lấy điểm N (N khác A và B). Đường thẳng vuông góc với MN tại N cắt các tiếp tuyến Ax, By của nửa đường tròn (O) lần lượt ở C và D (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). a. Chứng minh tứ giác ACNM nội tiếp. b. Chứng minh AN.MD = NB.CM. c. Gọi E là giao điểm của AN và CM. Đường thẳng qua E và vuông góc với BD, cắt MD tại F. Chứng minh N, F, B thẳng hàng. d. Khi góc ABN = 60 độ, tính theo R diện tích của phần nửa hình tròn tâm O bán kính R nằm ngoài ∆ABN.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Phước
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Phước gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Phước : + Từ một điểm T ở bên ngoài đường tròn tâm (O). Vẽ hai tiếp tuyến TA, TB với đường tròn (A, B là hai tiếp điểm). Tia TO cắt đường tròn (O) tại hai điểm phân biệt C và D (C nằm giữa T và O) và cắt đoạn AB tại F. a) Chứng minh tứ giác TAOB nội tiếp. b) Chứng minh: TC.TD = TF.TO. c) Vẽ đường kính AG của đường tròn (O). Gọi H là chân đường vuông góc kẻ từ điểm B đến AG, I là giao điểm của TG và BH. Chứng minh I là trung điểm của BH. [ads] + Cho tam giác ABC vuông tại A, có cạnh AC = 8m, B = 60 độ. Tính số đo góc C và độ dài các cạnh AB, BC đường trung tuyến AM của tam giác ABC. + Một thửa đất hình chữ nhật có chiều dài hơn chiều rộng 4m và có diện tích là 320m2. Tính chu vi thửa đất đó.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT An Giang
Thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT An Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT An Giang : + Cho ABCD là hình vuông có cạnh 1 dm. Trên cạnh AB lấy một điểm E. Dựng hình chữ nhật CEFG sao cho điểm D nằm trên cạnh FG. Tính diện tích hình chữ nhật CEFG (hình vẽ bên). + Cho tam giác ABC có ba góc đều nhọn và nội tiếp trong đường tròn (O). Vẽ các đường cao AA’, BB’, CC cắt nhau tại H. a. Chứng minh rằng tứ giác AB’HC’ là tứ giác nội tiếp. b. Kéo dài AA’ cắt đường tròn (O) tại điểm D. Chứng minh rằng tam giác CDH cân. [ads] + Cho hàm số y = x2 có đồ thị là parabol (P). a. Vẽ đồ thị (P) trên hệ trục tọa độ. b. Viết phương trình đường thẳng (d) có hệ số góc bằng −1 và cắt parabol (P) tại điểm có hoành độ bằng 1. c. Với (d) vừa tìm được, tìm giao điểm còn lại của (d) và (P).