Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2018 - 2019 trường Phan Chu Trinh - Đăk Lăk

Đề thi HK1 Toán 11 năm 2018 – 2019 trường Phan Chu Trinh – Đăk Lăk mã đề 157 được biên soạn theo hình thức kết hợp trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 5-5, đề gồm 2 trang với 20 câu trắc nghiệm và 4 câu tự luận, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2018 – 2019 trường Phan Chu Trinh – Đăk Lăk : + Đầu mùa thu hoạch bí đỏ, một bác nông dân đã bán cho người thứ nhất, nửa số bí đỏ thu hoạch được và nửa quả, bán cho người thứ hai nửa số còn lại và nửa quả, bán cho người thứ ba nửa số bí đỏ còn lại và nửa quả .v.v. Đến lượt người thứ bảy bác cũng bán nửa số bí đỏ còn lại và nửa quả thì không còn quả nào nữa. Hỏi bác nông dân đã thu hoạch được bao nhiêu quả bí đỏ đầu mùa? + Để tổ chức đêm văn nghệ chào mừng ngày 20/11/2018 THPT Phan Chu Trinh, Đăk Lăk đã chọn được 22 tiết mục trong đó có 10 tiết mục hát, 7 tiết mục múa và 5 tiết mục nhảy. Sau đó trường lấy ngẫu nhiên 4 tiết mục trong 22 tiết mục trên để tham gia cuộc thi “Giai điệu tuổi hồng 2018”. [ads] a) Có bao nhiêu cách chọn để trong 4 tiết mục có 2 tiết mục hát và 2 tiết mục múa. b) Tính xác suất để 4 tiết mục được chọn có 1 tiết mục nhảy, 1 tiết mục múa và 2 tiết mục hát. + Trong kỳ thi THPT Quốc Gia có môn thi bắt buộc là môn Toán. Môn thi này thi dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được cộng 0,2 điểm và mỗi câu trả lời sai bị trừ đi 0,1 điểm. Bạn Khôi (học sinh trường THPT Phan Chu Trinh – Đăk Lăk) vì học rất kém môn Toán nên chọn ngẫu nhiên cả 50 câu trả lời. Xác xuất để bạn Khôi đạt được 4 điểm môn Toán trong kỳ thi là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 60% số điểm, phần tự luận gồm 03 câu, chiếm 40% số điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi điểm I và điểm M lần lượt là trung điểm của các đoạn thẳng SA và OC. 1 Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). 2 Gọi (α) là mặt phẳng chứa đường thẳng IM và song song với đường thẳng BD. Xác định thiết diện của mặt phẳng (α) với hình chóp S.ABCD. 3 Giả sử mặt phẳng (α) cắt đường thẳng SO tại điểm K. Tính tỉ số SK/KO. + Từ 30 câu hỏi trắc nghiệm gồm 15 câu dễ, 9 câu trung bình và 6 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?
Đề thi HK1 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Thị Minh Khai - TP HCM
Đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi B là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được lấy từ A. a) Tính số phần tử của B. b) Chọn ngẫu nhiên 2 số thuộc B. Tính xác suất để trong hai số được chọn có đúng 1 số có mặt chữ số 3. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 13^n – 1 chia hết cho 12. + Tìm hệ số của x^20 trong khai triển Newton của (2x^5 – 4)^n biết n là số tự nhiên thỏa 2.2An + 50 = 2A2n.
Đề thi học kỳ 1 Toán 11 năm 2020 - 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số 1221 là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có 4 chữ số, tính xác suất chọn được số chia hết cho 7. + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là các điểm trên cạnh CD, AD, SA thỏa MD = 2MC, NA = 3ND, PA = 3PS. Gọi G là trọng tâm tam giác SBC. a) Tìm giao điểm K của đường thẳng BM và mặt phẳng (SAC). b) Chứng minh mặt phẳng (NPK) song song mặt phẳng (SCD). c) Chứng minh đường thẳng MG song song mặt phẳng (SAD). + Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.
Đề thi cuối học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phước Long - TP HCM
Đề thi cuối học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Một hộp đựng 22 viên bi khác nhau trong đó có 12 viên bi đỏ và 10 viên bi vàng. Chọn ngẫu nhiên từ hộp 7 viên bi và tính xác suất để: a) chọn đươc 7 viên bi cùng màu. b) chọn được 7 viên bi có đủ hai màu và thỏa mãn điều kiện số viên bi màu đỏ nhiều hơn số viên bi màu vàng. + Xếp 12 quyển sách gồm 1 quyển sách Hóa, 3 quyển sách Lý và 8 quyển sách Toán (trong đó có 3 quyển Toán T1, Toán T2 và Toán T3) thành một hàng trên giá sách. Tính xác suất để mỗi quyển sách Lý phải nằm giữa hai quyển sách Toán và đồng thời ba quyển sách Toán T1, Toán T2, Toán T3 luôn xếp cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SD và AB. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Chứng minh hai mặt phẳng (OMN) và (SBC) song song với nhau. c) Trên cạnh SA lấy điểm H sao cho HS = 2HA. Gọi G là trọng tâm tam giác SCD, chứng minh HG song song với mặt phẳng (SCN).