Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm hệ số góc của đường thẳng. Phương pháp giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đừng thẳng và hệ số góc của đường thẳng. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Phương pháp giải: Để xác định góc giữa đường thẳng d và tia Ox, ta làm như sau: Cách 1. Vẽ d trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2. Gọi α là góc tạo bởi tia Ox và d. Ta có: + Nếu α < 90° thì a > 0 và a = tanα. + Nếu α > 90° thì a < 0 và a = -tan(180° – α). Dạng 3 : Xác định đường thẳng biết hệ số góc. Phương pháp giải: Gọi phương trình đường thẳng cần tìm là d: y = ax + b. Ta cần xác định a và b dựa vào các kiến thức về góc và hệ số góc. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề phương trình bậc nhất hai ẩn
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Phương trình bậc nhất hai ẩn. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Xác định nghiệm của phương trình bậc nhất hai ẩn. Dạng 2. Biện luận và vẽ đồ thị của hàm số bậc nhất. Dạng 3. Tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN Xem thêm : Chuyên đề hệ phương trình bậc nhất hai ẩn
Chuyên đề hàm số bậc nhất
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số bậc nhất, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. A. TÓM TẮT LÝ THUYẾT 1. Hàm số bậc nhất. Là hàm số được cho bởi công thức y = ax + b trong đó a, b là hai số đã cho và a khác 0. 2. Các tính chất của hàm số bậc nhất. Hàm số bậc nhất xác định với mọi giá trị của x thuộc R. Hàm số bậc nhất: Đồng biến trên R khi a > 0; Nghịch biến trên R khi a < 0. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Tính giá trị của hàm số tại một điểm. + Việc tính toán theo kiểu này sẽ giúp ta xác định được toạ độ của nhiều điểm thuộc đồ thị hàm số một cách nhanh chóng. Ngoài ra, phương pháp sử dụng kết hợp máy tính cầm tay (sử dụng Slove) sẽ giúp cải thiện thời gian một cách hiệu quả. + Tính giá trị của hàm số y = f(x) khi cho giá trị của ẩn x0 là ta thay giá trị của x0 vào biểu thức y = f(x) để tìm được y = f(x0). Dạng 2: Vẽ đồ thị hàm bậc nhất. Theo các bước vẽ đã học. Dạng 3: Nhận dạng hàm số bậc nhất. Dựa vào định nghĩa hàm số bậc nhất. Dạng 4: Xét tính đông biến và nghịch biến của hàm số bậc nhất. Xét hàm số bậc nhất y = ax + b với a, b là hằng số: Khi a > 0, hàm số đồng biến trên R; khi a < 0, hàm số nghịch biến trên R. Dạng 5. Toán thực tế. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Dạng 1. Nhận biết về khái niệm hàm số. Dạng 2. Tính giá trị của hàm số, giá trị của biến số. Dạng 3. Tìm điều kiện xác định của hàm số. Dạng 4. Đồ thị hàm số. Xem thêm : + Chuyên đề hàm số bậc nhất và các bài toán liên quan + Tài liệu học tập Toán 9 chủ đề hàm số bậc nhất – Trần Quốc Nghĩa + 123 bài toán hàm số bậc nhất và đường thẳng – Lương Tuấn Đức