Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 của phòng GD&ĐT Yên Lạc – Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề giao lưu HSG Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc: Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. Tìm các giá trị của x để M có giá trị là số nguyên. Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc là một công cụ hữu ích giúp các em học sinh rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Đông Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đông Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Đông Sơn – Thanh Hóa : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật b) Biết diện tích tam giác BCH gấp bốn lần diện tich tam giác AEH.Chứng minh rằng AC = 2EF. c) Chứng minh rằng AD AM AN. + Tìm nghiệm tự nhiên của phương trình. + Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 11 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2 + 2xy + 2x + 2y – 3y2 = 4. + Cho số tự nhiên n > 2 và số nguyên tố p thỏa mãn p – 1chia hết cho n đồng thời n3 – 1 chia hết cho p. Chứng minh rằng n + p là một số chính phương. + Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D; E; F lần lượt là hình chiếu vuông góc của I lên BC; AB; AC. 1. Chứng minh: Tứ giác AEIF là hình vuông và ID = IE = IF. 2. Tia AI cắt DF tại K. a) Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. b) Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. 3. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng a2. Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất.
Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.