Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hệ thống kiến thức và phương pháp giải Toán THPT - Võ Công Trường

Tài liệu gồm 68 trang, được biên soạn bởi thầy Võ Công Trường, hệ thống kiến thức và phương pháp giải Toán THPT, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu hệ thống kiến thức và phương pháp giải Toán THPT – Võ Công Trường: Chủ đề 1 : Khảo sát hàm số và các bài toán liên quan. 1. Bảng đạo hàm. 2. Sự biến thiên. 3. Cực trị. 4. Giá trị lớn nhất – giá trị nhỏ nhất. 5. Đường tiệm cận. 6. Khảo sát và vẽ đồ thị của hàm số. 7. Tiếp tuyến. 8. Sự tương giao (dấu hiệu nhận biết: trong đề có từ: cắt, tiếp xúc, giao điểm hay điểm chung). 9. Ứng dụng sự tương giao. 10. Phép suy đồ thị. Chủ đề 2 : Lũy thừa, mũ và lôgarít. 1. Công thức. 2. Hàm số mũ và hàm số lôgarít. 3. Phương trình, bất phương trình mũ, lôgarit. 4. Ứng dụng hàm mũ – lôgarit vào bài toán thực tế. Chủ đề 3 : Nguyên hàm, tích phân và ứng dụng. 1. Nguyên hàm. 2. Tích phân. 3. Ứng dụng tích phân để tính diện tích, thể tích. Chủ đề 4 : Số phức. 1. Công thức, phép toán. 2. Phương trình bậc hai. 3. Tìm số phức thỏa điều kiện cho trước. 4. Tìm tập hợp điểm biểu diễn số phức. Chủ đề 5 : Khối đa diện. 1. Thể tích khối đa diện. 2. Ứng dụng thể tích. 3. Một số hình đa diện thường gặp. 4. Công thức đặc biệt tính thể tích khối tứ diện ABCD. Chủ đề 6 : Khối tròn xoay. 1. Thể tích, diện tích hình tròn xoay. 2. Sự tương giao giữa hình tròn xoay và hình đa diện. Chủ đề 7 : Phương pháp tọa độ trong không gian. 1. Vectơ và tọa độ. 2. Mặt phẳng. 3. Đường thẳng. 4. Mặt cầu. 5. Vị trí tương đối. 6. Khoảng cách. 7. Góc. 8. Hình chiếu, điểm đối xứng. 9. Tìm tọa độ điểm thỏa điều kiện lớn nhất, nhỏ nhất. 10. Tọa độ các tâm của tam giác. [ads] Phụ lục Phương trình, bất phương trình và hệ phương trình. 1. Nhị thức bậc nhất. 2. Tam thức bậc hai, phương trình bậc hai. 3. Phương trình bậc ba. 4. Phương trình bậc bốn trùng phương. 5. Phương trình chứa căn thức. 6. Bất phương trình chứa căn thức. 7. Phương trình, bất phương trình chứa dấu giá trị tuyệt đối. 8. Hệ phương trình. Bất đẳng thức. Lượng giác. Tổ hợp và xác suất. Cấp số cộng – cấp số nhân. Giới hạn. Hình học (tổng hợp) phẳng. 1. Hệ thức lượng trong tam giác. 2. Hệ thức lượng trong tứ giác. 3. Hệ thức lượng trong đường tròn. 4. Tâm của tam giác. Hình học tọa độ trong mặt phẳng. 1. Tọa độ. 2. Phương trình đường thẳng. 3. Phương trình đường tròn. 4. Elíp. 5. Công thức tính diện tích tam giác, hình bình hành bằng tọa độ. Phép biến hình trong mặt phẳng. Hình học không gian (tổng hợp) lớp 11. 1. Quan hệ song song. Dạng 1: Chứng minh quan hệ song song. Dạng 2: Tìm giao tuyến của 2 mặt phẳng. Dạng 3: Tìm giao điểm của đường thẳng và mặt phẳng. Dạng 4: Tìm thiết diện của hình chóp, lăng trụ được cắt bởi mặt phẳng. 2. Quan hệ vuông góc. Dạng 1: Chứng minh quan hệ vuông góc. Dạng 2: Tìm hình chiếu của điểm lên mặt phẳng. Dạng 3: Tính góc. Dạng 4: Tính khoảng cách. Sơ đồ tư duy Toán THPT.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán
Chỉ còn một tháng nữa, kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức sẽ chính thức được diễn ra, đây là quãng thời gian các em học sinh cần tập trung ôn tập nhằm củng cố và nâng cao kiến thức Toán, kỹ năng giải toán trắc nghiệm, thử sức với nhiều dạng toán khác nhau, nhất là các dạng toán vận dụng cao, nhằm chinh phục mức điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia 2019 môn Toán sắp tới. Đồng hành cùng các em trong kỳ thi sắp tới, chia sẻ đến các em tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán. Tài liệu gồm 238 trang được tổng hợp bởi thầy Nguyễn Bảo Vương, tuyển chọn các bài toán hay và khó, với đầy đủ các chủ đề theo cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và sở GD&ĐT trên cả nước, 100% bài toán có đáp án và lời giải chi tiết. [ads] Khái quát nội dung tài liệu tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán: + Chuyên đề 1. Hàm số và các vấn đề liên quan (trang 1 – trang 86). + Chuyên đề 2. Hàm số mũ – logarit (trang 87 – trang 111). + Chuyên đề 3. Nguyên hàm – tích phân và ứng dụng (trang 112 – trang 131). + Chuyên đề 4. Số phức (trang 132 – trang 150). + Chuyên đề 5. Khối đa diện và thể tích khối đa diện (trang 151 – trang 180). + Chuyên đề 6. Khối tròn xoay (trang 181 – trang 187). + Chuyên đề 7. Phương pháp tọa độ trong không gian Oxyz (trang 188 – trang 217). + Chuyên đề 8. Một số bài toán khó lớp 11 (trang 218 – trang 238).
Phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019
Tài liệu gồm 54 trang hướng dẫn giải, phân tích, bình luận, phát triển các câu hỏi và bài toán vận dụng cao (từ câu 39 đến câu 50) trong đề tham khảo môn Toán kỳ thi THPT Quốc gia năm 2019, tài liệu được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Toán VD – VDC. Trích dẫn lời mở đầu tài liệu phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019: Làm toán không vội vàng được, phải làm từ từ để hiểu hết được bản chất của nó và ý nghĩa của nó trong thực tiễn. Đã đến lúc phải trả lại danh hiệu cho em nó “Toán học là nữ hoàng của mọi bộ môn khoa học”. Kỳ thi THPT Quốc gia từ năm 2016 – 2018, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong kỹ năng giải toán nói riêng. Bước sang kỳ thi THPT Quốc gia năm 2018 – 2019 đánh giá sự đổi mới toàn bộ trong nội dung ra đề của Bộ Giáo Dục với mục tiêu chính là hạn chế “Casio hóa”, tăng cường các câu hỏi Vận dụng và Vận dụng cao nhằm phân hóa được học sinh ở các ngưỡng trung bình – khá – giỏi. Với mong muốn đưa ra những nhận định, những phân tích cho đề Tham Khảo 2019 vừa được BGD công bố, để giúp học sinh tiếp cận gần hơn với những bài toán khó đó, tập thể những thầy cô chúng tôi sau rất nhiều tâm huyết xin được trân trọng giới thiệu đến bạn đọc “Phân tích, bình luận và phát triển đề Tham Khảo 2019 môn Toán”.
Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3)
Tiếp tục series đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán hướng đến kỳ thi THPT Quốc gia năm 2019, giới thiệu đến bạn đọc đề thi số 3, loạt đề do các tác giả nhóm Chinh Phục Olympic Toán tổng hợp và biên soạn, đây là các bài toán thuộc mức độ khó và rất khó được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT, sở GD&ĐT. Đề gồm 42 trang với 60 bài toán trắc nghiệm, có phân tích và lời giải chi tiết. Trích dẫn đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) : + Cho (C) là đồ thị của hàm số y=x^3 + 3mx + 1(với m < 0 là tham số thực). Gọi M là đường thẳng đi qua hai điểm cực trị của (C). Đường thẳng d cắt đường tròn tâm I(-1;0) bán kính R = 3 tại hai điểm phân biệt A, B. Gọi S là tập hợp tất cả các giá trị của m sao cho diện tích tam giác IAB đạt giá trị lớn nhất. Hỏi S có tất cả bao nhiêu phần tử? [ads] + Cho tập A = {0,1,2,3,4,5,6,7,8,9}. Gọi S là tập hợp tất cả các số có 5 năm chữ số phân biệt được lập từ A. Chọn ngẫu nhiên một số từ S. Khi đó xác suất để chọn được số có dạng a1a2a3a4a5, sao cho a1 < a2 < a3 và a3 > a4 > a5 là? + Xét các hình chóp S.ABCD thỏa mãn điều kiện: đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Biết rằng thể tích khối chóp S.ABCD đạt giá trị nhỏ nhất V, khi cosin góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng √p/q, trong đó p, q là các số nguyên dương và phân số p/q là tối giản. Tính T = (p + q)V0.
Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 2)
Tài liệu gồm 35 trang tuyển tập 40 câu hỏi và bài toán vận dụng cao có lời giải chi tiết nhằm ôn luyện kỳ thi THPTQG môn Toán năm 2019, các bài toán được chọn lọc từ nhóm các đề thi thử và đề khảo sát chất lượng môn Toán giai đoạn giữa học kỳ 1 năm học 2018 – 2019, tài liệu được biên soạn bởi nhóm tác giả Chinh Phục Olympic Toán.