Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 đề ôn thi cuối học kì 1 (HK1) lớp 10 môn Toán

Nội dung Tuyển tập 20 đề ôn thi cuối học kì 1 (HK1) lớp 10 môn Toán Bản PDF Tài liệu gồm 59 trang, được chia sẻ bởi thầy giáo Nguyễn Chín Em, tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán lớp 10, giúp học sinh khối lớp 10 rèn luyện để chuẩn bị cho kì thi HK1 Toán lớp 10 năm học 2021 – 2022. Trích dẫn tài liệu tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán lớp 10: + Trong ngày hội mua sắm trực tuyến Online Friday, cửa hàng T đã tiến hành giảm giá và bán đồng giá nhiều sản phẩm. Các loại áo bán đồng giá x (đồng), các loại mũ bán đồng giá y (đồng), các loại túi xách bán đồng giá z (đồng). Ba người bạn Nga, Lan, Hòa đã cùng nhau mua sắm trực tuyến tại của hàng T. Nga mua 2 chiếc áo, 1 mũ, 3 túi xách hết 1450000 (đồng); Lan mua 1 chiếc áo, 2 mũ, 1 túi xách hết 1050000 (đồng); Hòa mua 3 chiếc áo, 2 túi xách hết 1100000 (đồng). Hỏi x, y, z lần lượt là bao nhiêu? A. 150000; 250000;350000. B. 300000;300000;250000. C. 200000;250000;250000. D. 200000;300000; 250000. + Cho 2 phương trình 2 x x 1 0 1 và 1 2 x x 2. Khẳng định đúng nhất trong các khẳng định sau là: A. (1) và (2) tương đương. B. Phương trình (1) là hệ quả của phương trình (2). C. Phương trình (2) là hệ quả của phương trình (1). D. Cả A, B, C đều đúng. + Cho ba điểm A B C phân biệt. Tập hợp những điểm M mà CM CB CA CB là: A. Đường thẳng đi qua A và vuông góc với BC. B. Đường thẳng đi quàa B và vuông góc với AC. C. Đường thẳng đí qua C (và vuông góc với AB. D. Đường tròn đường kính AB. + Trong một lớp học có 100 học sinh, 35 học sinh chơi bóng đá và 45 học sinh chơi bóng chuyền, 10 học sinh chơi cả hai môn thể thao. Hỏi có bao nhiêu học sinh không chơi môn thể thao nào? (Biết rằng chỉ có hai môn thể thao là bóng đá và bóng chuyền). + Cho tam giác ABC. Gọi F là điểm trên cạnh BC kéo dài sao cho 5 2 FB FC 1 1 2 2 x x x x 13 Chứng minh 5 2 3 3 AF AB AC b) Trong mặt phẳng tọa độ Oxy cho các điểm A 1 2 B 2 3 C 0 2. Xác định tọa độ điểm H là hình chiếu vuông góc của A lên BC. Tính diện tích tam giác ABC. c) Cho tam giác nhọn ABC nội tiếp đường tròn O. Tìm điểm M thuộc O để biểu thức T MA MB MC 3 5 đạt giá trị lớn nhất và giá trị nhỏ nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 10 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Trong mặt phẳng tọa độ Oxy cho ba điểm: A(1;3), B(5;1), C(4;–1). a) Chứng minh tam giác ABC vuông. b) Tìm tọa độ điểm D nằm trên trục hoành để ba điểm A, B, M thẳng hàng. c) Tìm tọa độ điểm H là chân đường cao kẻ từ đỉnh B của tam giác ABC. + Cho tam giác ABC có AB = 8, BC = 7, góc BAC = 60 độ. Tính độ dài cạnh AC. + Viết phương trình Parabol (P): y = ax2 + bx + c, biết (P) có đỉnh I(–2;–1) và cắt trục tung tại điểm có tung độ bằng 3.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 10 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Giải và biện luận phương trình sau theo tham số m: x(3m – 2) – m = m2.(x – 1). + Cho tam giác ABC, biết AB = 6(cm), AC = 8 (cm), BC = 12 (cm). a) Tính độ dài trung tuyến AI và độ dài đường cao AH của tam giác ABC. b) Trên cạnh AB lấy điểm M sao cho AM = 2(cm). Gọi N là trung điểm của cạnh AC. Tính AM.AN. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có các đỉnh A(6;3), B(3;6) và C(1;-2). a) Tìm tọa độ điểm D sao cho ABCD là hình bình hành. b) Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 10, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 10, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.