Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm học 2017 2018 trường THPT Kim Liên Hà Nội Bản PDF Đề thi HK1 Toán lớp 11 năm học 2017 – 2018 trường THPT Kim Liên – Hà Nội gồm 4 trang với 2 phần: + Phần trắc nghiệm: gồm 25 câu hỏi, thời gian làm bài 45 phút, đòi hỏi học sinh làm bài nhanh và chính xác. + Phần tự luận: gồm 4 bài toán tự luận, thời gian làm bài 45 phút, kiểm tra khả năng trình bày lời giải của học sinh. Đề thi có đáp án . Trích dẫn đề thi : + Cho hình bình hành ABCD, biết A và B cố định, điểm C di động trên đường thẳng Δ cố định. Khẳng định nào sau đây là đúng? A. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng trục AB B. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ BA C. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng tâm I (I là trung điểm của AB) D. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ AB [ads] + Cho hàm số y = tanx. Khẳng định nào sau đây là sai? A. Hàm số là hàm số chẵn B. Hàm số tuần hoàn với chu kỳ π C. Hàm số đồng biến trên mỗi khoảng (-π/2 + kπ; π/2 + kπ) k ∈ Z D. Tập xác định của hàm số là R\(π/2 + kπ) k ∈ Z + Trên giá sách có 6 quyển sách tiếng Việt khác nhau, 4 quyển sách tiếng Anh khác nhau, 7 quyển sách tiếng Pháp khác nhau. Hỏi có bao nhiêu cách lấy từ giá trên 3 quyển sách sao cho có đủ cả sách tiếng Việt, tiếng Anh và tiếng Pháp? A. 59   B. 17 C. 680   D. 168 Bạn đọc có thể theo dõi các đề thi HK1 Toán lớp 11

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.