Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Khánh Yên - Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2023 – 2024 trường THCS Khánh Yên, huyện Văn Bàn, tỉnh Lào Cai. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Khánh Yên – Lào Cai : + Trong trò chơi rung chuông vàng trên sàn đấu có 120 học sinh được đánh số thứ tự từ 1 đến 120. Chọn ngẫu nhiên một học sinh để phỏng vấn. Tính xác suất của biến cố. 1. A : “Học sinh được chọn mang số tròn chục”. 2. B: “ Học sinh được chọn mang số chia cho 17 dư 2 và chia cho 3 dư 1”. + Để đánh máy một bản thảo cuốn sách gồm 71 trang, hai cô nhân viên văn phòng Nhung và Hoa cùng đánh máy trong 4 giờ, ngoài ra cô Hoa còn phải làm thêm 2,5 giờ nữa mới xong. Nếu cả cô Nhung và cô Hoa cùng đánh máy trong 4,75 giờ thì để hoàn thành công việc, cô Hoa chỉ cần làm thêm 45 phút nữa. Hỏi mỗi cô đánh máy riêng một mình thì trong một giờ đánh máy được bao nhiêu trang. + Bạn Hà làm một cái lồng đèn hình quả trám (xem hình bên) là hình ghép từ hai hình chóp tứ giác đều có cạnh đáy 20 cm, cạnh bên 32 cm, khoảng cách giũa hai đỉnh của hai hình chóp là 30 cm. a) Tính thể tích của lồng đèn. b) Bạn Hà muốn làm 50 cái lồng đèn như này, cần phải chuẩn bị bao nhiêu mét thanh tre? (mối nối giữa các que tre có độ dài không đáng kể).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An
Nội dung Đề thi HSG lớp 8 môn Toán năm 2020 2021 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Đề thi HSG lớp 8 môn Toán năm 2020-2021 phòng GD&ĐT thành phố Vinh Nghệ An Ngày ... tháng 04 năm 2021, Phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020-2021. Đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An: + Chứng minh rằng: 11^100 - 1 chia hết cho 1000. + Cho đa thức f(x) chia cho đa thức x - 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Hỏi dư trong phép chia đa thức f(x) cho đa thức (x^2 + 1)(x - 2) là bao nhiêu? + Trong tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Điểm D trên tia HC sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD. Đây là một số ví dụ về những câu hỏi thú vị và đầy thách thức trong đề thi HSG Toán lớp 8 năm 2020-2021 của phòng GD&ĐT thành phố Vinh - Nghệ An. Chắc chắn rằng các em học sinh đã cần phải chuẩn bị kỹ lưỡng và tự tin để đối mặt với những bài toán này. Chúc các em thành công trong kỳ thi của mình!
Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán cấp huyện năm 2020 2021 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Đề thi Olympic Toán lớp 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội Ngày Thứ Năm 22 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội đã tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020-2021. Đề thi Olympic Toán lớp 8 cấp huyện năm 2020-2021 phòng GD&ĐT Ba Vì - Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Cụ thể một số câu hỏi trong đề thi: Tìm các số nguyên x, y thỏa mãn: xy - 4 = 2x + 3y. Tìm các số nguyên x sao cho A = x(x - 1)(x - 7)(x - 8) là một số chính phương. Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội
Nội dung Đề thi Olimpic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Đề thi Olimpic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Quốc Oai - Hà Nội Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề thi Olimpic Toán lớp 8 năm 2020 - 2021 từ phòng GD&ĐT Quốc Oai - Hà Nội. Hãy cùng nhau vào bài thi và thách thức khả năng toán học của mình! Trích dẫn một số câu hỏi trong đề thi: + Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh rằng ab - a - b + 1 chia hết cho 48. + Câu 2: Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Câu 3: Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Hãy tính các tỷ số liên quan đến tam giác. Hãy tự tin và thử sức với đề thi Olimpic Toán lớp 8 năm 2020 - 2021, chắc chắn rằng sẽ có những trải nghiệm toán học thú vị và bổ ích!
Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội Đề thi Olympic Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Gia Lâm - Hà Nội bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài cho kỳ thi này là 90 phút. Kỳ thi sẽ diễn ra vào ngày 09 tháng 04 năm 2021.