Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2022 - 2023 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Thuận Thành 1, tỉnh Bắc Ninh; đề thi hình thức tự luận với 07 bài toán, thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề thi HSG Toán 11 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15, …, 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau + Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. + Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. + Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ lệ vàng nếu tỷ số giữa tổng các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Vậy tỷ lệ vàng được biểu diễn như sau. 1) Hãy tính tỷ lệ vàng ϕ đó. 2) Cho một đường tròn. Trên đường tròn đó lấy năm điểm ABCDE sao cho ABCDE là ngũ giác đều. Nối các đỉnh của đa giác đó tạo thành hình ngôi sao năm cánh (như hình vẽ).Gọi giao điểm của BE với AC và AD lần lượt là I và K. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với AD // BC, AB = BC = a, AD = 2a, tam giác SAD vuông cân tại S và SB a 3. Gọi M là trung điểm của SA, G là trọng tâm của tam giác SCD, H là giao điểm của BG và mặt phẳng (SAC). Chứng minh rằng BM // (SCD) và tính tỉ số HB HG. Cho tứ diện đều ABCD cạnh a. Hai điểm M N chạy tương ứng trên các đoạn AB và CD sao cho BM DN. Tìm giá trị lớn nhất, nhỏ nhất của MN.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 11 năm 2023 - 2024 trường THPT Lê Quý Đôn - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Lê Quý Đôn, tỉnh Thái Bình. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Học sinh chọn 1 trong 4 phương án A B C D; Học sinh chỉ chọn ĐÚNG hoặc SAI; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 11 năm 2023 – 2024 trường THPT Lê Quý Đôn – Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB CD AB CD 6a 3 tam giác SAB là tam giác đều. Gọi M là trung điểm của cạnh AD. Đúng Sai 1. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng đi qua S và song song với AB. 2. Giao điểm của đường thẳng AD và mặt phẳng (SBC) nằm trong mặt phẳng (SCD). 3. CD // SB. 4. Mặt phẳng α đi qua M song song với mặt phẳng (SAB) cắt các mặt của hình chóp (nếu có) theo các đoạn giao tuyến tạo thành một đa giác có diện tích bằng 2 5 3. + Ba bạn An, Bình, Chiến mỗi người chọn ngẫu nhiên một số tự nhiên thuộc đoạn [1;2023]. Tính xác xuất để ba số được chọn có tổng chia hết cho 3. Làm tròn kết quả đến chữ số thập phân thứ 2. + Trong mặt phẳng Oxy cho tam giác ABC có A(1;3), B(2;1), C(5;4). Đường thẳng ∆ đi qua đỉnh A và cắt cạnh BC tại D sao cho diện tích tam giác ADC bằng 2 lần diện tích tam giác ADB. Tính tổng khoảng cách từ B và C đến đường thẳng ∆.
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Bỉm Sơn - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Bỉm Sơn, tỉnh Thanh Hóa; đề thi gồm 40 câu trắc nghiệm và 10 câu điền khuyết, thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Bỉm Sơn – Thanh Hóa : + Ông Đạt gửi tổng cộng 320 triệu đồng ở hai ngân hàng X và Y theo phương thức lãi kép. Số tiền thứ nhất gửi ở ngân hàng X với lãi suất 2,1% một quý (1 quý: 3 tháng) trong thời gian 15 tháng. Số tiền còn lại gửi ở ngân hàng Y với lãi suất 0,73% một tháng trong thời gian 9 tháng. Tổng tiền lãi đạt được ở hai ngân hàng là 27507768 đồng. Hỏi số tiền ông Đạt gửi lần lượt ở ngân hàng X và Y là bao nhiêu (làm tròn kết quả đến hàng đơn vị)? + Trong một cuộc thi làm đồ dùng học tập do trường phát động, bạn An nhờ bố làm một hình chóp tứ giác đều bằng cách lấy một mảnh tôn hình vuông ABCD có cạnh bằng 5cm (tham khảo hình vẽ). Cắt mảnh tôn theo các tam giác cân AEB BFC CGD DHA và sau đó gò các tam giác AEH BEF CFG DGH sao cho bốn đỉnh A B C D trùng nhau tạo thành khối chóp tứ giác đều. Thể tích lớn nhất của khối chóp tứ giác đều tạo thành bằng? + Cho phương trình 2 3 log 3 log 1 0 xm (m là tham số thực). Tìm m để phương trình đã cho có đúng 2 nghiệm phân biệt thuộc khoảng (0;1) ta được b m a c là phân số tối giản. Khi đó abc bằng?
Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 - 2024 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Cho tập hợp A = {1; 2; 3; 4; 5}. Gọi B là tập hợp gồm tất cả các số tự nhiên có ít nhất ba chữ số, các chữ số đôi một khác nhau thuộc tập hợp A. Chọn ngẫu nhiên một số thuộc tập hợp B. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho tam giác ABC có đỉnh A(1;2), đường trung tuyến BM có phương trình 2 1 0 x y và đường phân giác trong CD có phương trình x y 1 0. Viết phương trình đường thẳng BC. + Một câu lạc bộ có 41 thành viên, mỗi người quen với ít nhất 21 người khác (trong đó quan hệ quen biết là hai chiều). a. Chứng minh rằng tồn tại 3 thành viên đôi một quen nhau. b. Chứng minh rằng tồn tại ít nhất một thành viên có số người quen là số chẵn. c. Hỏi có thể xảy ra trường hợp 3 thành viên bất kỳ trong câu lạc bộ đều có không quá 5 người quen chung hay không?
Đề học sinh giỏi Toán 11 năm 2023 - 2024 trường THPT Anh Sơn 3 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Anh Sơn 3, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2023 – 2024 trường THPT Anh Sơn 3 – Nghệ An : + Anh An nhập học đại học vào tháng 8 năm 2021. Bắt đầu từ tháng 9 năm 2021, cứ vào ngày mồng một hàng tháng anh vay ngân hàng 3 triệu đồng với lãi suất cố định 0,6% / tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng 9 năm 2023 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng 2 triệu đồng (do anh đi làm thêm). Hỏi ngay khi kết thúc ngày anh ra trường (30/06/2025) anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng). + Cho lăng trụ đứng ABC A B C có đáy ABC là tam giác vuông tại A với AC a 3. Biết BC hợp với mặt phẳng AA C C một góc 30o và hợp với mặt phẳng đáy góc sao cho 6 sin 4. Gọi M N lần lượt là trung điểm cạnh BB và AC. Tính khoảng cách giữa hai đường thẳng MN và AC. + Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước đến để khoan giếng nước. Biết giá của mét khoan đầu tiên là 80.000 đồng, kể từ mét khoan thứ 2 giá của mỗi mét khoan tăng thêm 5000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 40m mới có nước. Vậy hỏi phải trả bao nhiêu tiền để khoan cái giếng đó?