Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng

Nội dung Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng Bản PDF Sytu chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng, đề có mã đề 169 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh làm bài thi môn Toán trong 90 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 giỏi môn Toán đang học tập tại các trường học trên địa bàn thành phố Đà Nẵng, các em đạt giải chính là tấm gương để học sinh toàn thành phố noi theo, các em cũng sẽ được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng : + Cho hình trụ (T) có hai hình tròn đáy là (O) và (O’). Xét hình nón (N) có đỉnh O’, đáy là hình tròn (O) và đường sinh hợp với đáy một góc α. Biết tỉ số giữa diện tích xung quanh hình trụ (T) và diện tích xung quanh hình nón (N) bằng 3. Tính số đo góc α. [ads] + Trong không gian Oxyz, cho mặt cầu (S1) có tâm I1(1;0;1), bán kính R1 = 2 và mặt cầu (S2) có tâm I2 = (1;3;5), bán kính R2 = 1. Đường thẳng d thay đổi nhưng luôn tiếp xúc với (S1), (S2) lần lượt tại A và B. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của đoạn AB. Tính P = M.m. + Một cấp số nhân với công bội bằng -2, có số hạng thứ ba bằng 8 và số hạng cuối bằng -1024. Hỏi cấp số nhân đó có bao nhiêu số hạng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT An Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT An Giang Bản PDF Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2021.
Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM
Nội dung Đề chọn đội tuyển Toán năm 2021 2022 trường Phổ thông Năng khiếu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn đội tuyển Toán năm học 2021 – 2022 trường Phổ thông Năng khiếu, thành phố Hồ Chí Minh; kỳ thi được diễn ra trong hai ngày: Thứ Bảy 04/12/2021 và Thứ Ba 07/12/2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF Thứ Hai ngày 22 tháng 11 năm 2021, sở Giáo dục và Đào tạo Đồng Nai tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai gồm 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 24 tháng 11 năm 2021. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn tâm O và có các đường cao AD, BE, CF cắt nhau tại H. Gọi O1 là điểm đối xứng của O qua đường thẳng BC. AO1 cắt BC tại L, DE cắt HC tại M, DF cắt HB tại N. a) Chứng minh đường tròn ngoại tiếp tam giác DMN và đường tròn đường kính AL tiếp xúc nhau. b) Tiếp tuyến tại D của đường tròn đường kính AL cắt EF tại K. Chứng minh KH = KD. + Cho các số nguyên dương a, b, c phân biệt. Chứng minh tồn tại số nguyên n sao cho a + n, b + n, c + n là các số đôi một nguyên tố cùng nhau. + Trên mặt phẳng ta vẽ 3333 đường tròn đôi một khác nhau và có bán kính bằng nhau. Chứng minh rằng luôn chọn ra được trong số đó 34 đường tròn mà các đường tròn này đôi một có điểm chung hoặc đôi một không có điểm chung.