Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm học 2018 - 2019 trường THCS Cổ Loa - Hà Nội

THCS. giới thiệu đến các em học sinh lớp 9 đề kiểm tra khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội, kỳ thi được diễn ra vào thứ Bảy ngày 13 tháng 04 năm 2019 nhằm đánh giá chất lượng học tập môn Toán của học sinh khối lớp 9 trong giai đoạn cuối học kỳ 2 năm học 2018 – 2019, đây cũng là dịp để các em tự kiểm chứng năng lực bản thân trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài kiểm tra khảo sát Toán 9 trong thời gian 120 phút. Trích dẫn đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 6 giờ xong. Nếu làm riêng xong công việc đó thì người thứ nhất làm nhanh hơn người thứ hai là 5 giờ. Tính thời gian mỗi người làm riêng xong công việc đó? [ads] + Trong mặt phẳng xOy cho Parabol (P): y = x^2 và đường thẳng (d): y = 2(m – 3)x + 4. a. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B với mọi giá trị của m. b. Gọi I là giao điểm của (d) và trục Oy. Tìm m để A và B đối xứng nhau qua I. + Cho đường tròn (O;R) đường kính AB và điểm C thuộc (O) sao cho AC < BC. Tiếp tuyến tại C cắt các tiếp tuyến tại A và B lần lượt tại E và F. 1. Chứng minh tứ giác AECO nội tiếp được. 2. Gọi H là giao điểm của EO và AC. Chứng minh: OH.OE = R^2. 3. BC cắt AB tại D, OD cắt AC tại I, tia DH cắt AB tại K. Gọi P là điểm đối xứng của H qua E. Chứng minh tứ giác AHDP là hình bình hành và IK // AD. 4. IK cắt EO tại M. Chứng minh ba điểm A, M, F thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).