Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Tân Dân - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tân Dân, huyện An Lão, thành phố Hải Phòng; đề thi có ma trận, đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Tân Dân – Hải Phòng : + Quãng đường AB dài 120km. Một người đi xe đạp từ A đến B, cùng thời điểm đó một người đi xe máy từ B về A và gặp nhau tại một địa điểm cách B 80km. Tìm vận tốc của mỗi xe biết vận tốc xe đạp nhỏ hơn vận tốc xe máy là 20km/h. + Cho tam giác ABC nhọn nội tiếp (O;R), đường cao BD, CE cắt nhau tại H. AH cắt BC tại K, cắt đường tròn tại điểm thứ hai là M. d) Chứng minh tứ giác ADHE nội tiếp, xác định tâm I của đường tròn ngoại tiếp tứ giác đó. e) Chứng minh KH = KM f) Cho (O;R) và BC cố định, điểm A di chuyển trên cung lớn BC sao cho tam giác ABC nhọn. Chứng minh đường tròn ngoại tiếp tam giác ADE có bán kính không đổi. + Cho (P): y = x2 và (d): y = 2x + 3. Khẳng định nào sau đây là đúng. A. (P) và (d) chỉ có một điểm chung. B. (P) và (d) không giao nhau. C. (d) tiếp xúc với (P). D. (P) và (d) cắt nhau tại hai điểm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).