Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI Toán 9 năm học 2017 - 2018 phòng GD và ĐT Nam Từ Liêm - Hà Nội

Đề thi HKI Toán 9 năm học 2017 – 2018 phòng GD và ĐT Nam Từ Liêm – Hà Nội gồm 4 câu hỏi trắc nghiệm (chiếm 1 điểm) và 5 bài toán tự luận (chiếm 9 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M. a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH. b) Chứng minh: AH là tiếp tuyến của đường tròn (O). c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh: 3 điểm E, O, F thẳng hàng và BF.AE = R^2. d) Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ. [ads] + Cho hàm số y = (m – 4)x + 4 có đồ thị là đường thẳng d (m khác 4) a) Tìm m để đồ thị hàm số đi qua A(1;6). b) Vẽ đồ thị hàm số với m vừa tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút). c) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = (m – m^2)x + m + 2 + Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai: A. MH^2 = HN.HB B. MP^2 = NH.HP C. MH.NP = MN.MP D. 1/MN^2 + 1/MP^2 = 1/MH^2

Nguồn: toanmath.com

Đọc Sách

Bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GD và ĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em bộ đề ôn tập thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD và ĐT Bắc Ninh, đây là tuyển tập đề thi học kỳ 1 Toán 9 của sở Giáo dục và Đào tạo Bắc Ninh từ năm 1997 đến nay, các đề đều ở dạng tự luận.
Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Bắc Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh lớp 9 đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội, đề thi nhằm đánh giá lại toàn diện năng lực môn Toán của học sinh lớp 9 sau giai đoạn học kỳ 1 vừa qua, để làm cơ sở cho việc đánh giá, xếp loại học lực, tuyển chọn học sinh giỏi Toán 9. Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không tính thời gian giáo viên phát đề). [ads] Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Bắc Từ Liêm – Hà Nội : + Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d). 1) Vẽ đường thẳng (d) khi m = 2. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1. 3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1. + Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D. 1) Chứng minh rằng: ∆MEN vuông tại E. Từ đó chứng minh DE.DM = DN2. 2) Từ O kẻ OI vuông góc với ME (I ∈ ME). Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn. 3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O. 4) Chứng minh rằng: góc DEA = góc DAM.
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R