Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Thái Nguyên: Cho số nguyên dương n sao cho 2n + 1 và 3n + 1 đều là các số chính phương. Chứng minh rằng số 15n + 8 là hợp số. Bạn Chi được thưởng kẹo mỗi ngày, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận không quá 10 chiếc. Chứng minh rằng trong một số ngày liên tiếp, tổng số kẹo Chi nhận là 27 chiếc. Cho đường tròn (I;r) nội tiếp tam giác ABC. Một số điểm và đường tròn khác đã được xác định. Chứng minh hai điều kiện quan trọng về tính chất và kích thước của các đường tròn và tam giác đều. Đề tuyển sinh này giúp học sinh thử thách khả năng giải quyết vấn đề và logic trong môn Toán. Nó cung cấp cơ hội cho học sinh thể hiện kiến thức và kỹ năng một cách chi tiết và logic. Hy vọng rằng các thí sinh sẽ làm tốt trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2021 - 2022 phòng GDĐT Anh Sơn - Nghệ An
Đề thi thử Toán vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An : + Một đơn vị vận tải dự định điều một số xe cùng loại để vận chuyển 40 tấn hàng. Lúc sắp khởi hành, đơn vị được giao vận chuyển thêm 14 tấn nữa. Do đó phải điều thêm 2 xe cùng loại trên và mỗi xe phải chở thêm 0,5 tấn so với ban đầu. Biết rằng mỗi xe đều chở số lượng hàng như nhau và số xe ban đầu không quá 15 xe. Tính số xe dự định phải điều ban đầu? + Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp CEF luôn thuộc một đường thẳng cố định. + Tìm x, y thoả mãn.
Đề thi thử Toán vào 10 năm 2021 - 2022 lần 1 trường THCS Kim Liên - Nghệ An
Đề thi thử Toán vào 10 năm 2021 – 2022 lần 1 trường THCS Kim Liên – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào 10 năm 2021 – 2022 lần 1 trường THCS Kim Liên – Nghệ An : + Hai tổ công nhân cùng làm một công việc. Nếu mỗi tổ làm riêng thì tổ A cần 20 giờ, tổ B cần 15 giờ. Người ta giao cho tổ A làm trong một thời gian rồi nghỉ, và tổ B làm tiếp cho xong. Biết thời gian tổ A làm ít hơn tổ B làm là 3 giờ 20 phút. Tính thời gian mỗi tổ đã làm? + Cho đường tròn O có dây BC cố định không đi qua tâm O. Điểm A di động trên đường tròn O sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE và CF của tam giác ABC (E thuộc AC, F thuộc AB) cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt O tại điểm M. Chứng minh rằng: a) Bốn điểm B, C, E, F cùng thuộc một đường tròn. b) KMF KEA. c) Đường thẳng KH vuông góc với AI (I là trung điểm của BC). + Lập phương trình đường thẳng (d) biết: (d) đi qua điểm A(1;5) và song song với đường thẳng y = 2x – 4.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THPT Hàm Rồng - Thanh Hóa
Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THPT Hàm Rồng – Thanh Hóa gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 18 tháng 04 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THPT Hàm Rồng – Thanh Hóa : + Cho đường tròn O đường kính AB R 2. Gọi I là trung điểm của AO và d là đường thẳng vuông góc với AB tại I. Gọi M là một điểm tùy ý trên d sao cho M nằm ngoài O, MB cắt O tại điểm N N B MA cắt O tại điểm P P A. Đường thẳng AN cắt d tại H. 1. Chứng minh rằng: BNHI là tứ giác nội tiếp. 2. Chứng minh rằng: HP HB HA HN. 3. Giả sử MI R 2. Tính IH theo R. + Cho a là số thực dương. Tìm giá trị nhỏ nhất của biểu thức: T. + Tìm m để đường thẳng 2 y m x m 2 1 song song với đường thẳng y x 2 3.
Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Minh Phú - Phú Thọ
Đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Minh Phú – Phú Thọ gồm 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 120 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 – 2022 trường THCS Minh Phú – Phú Thọ : + Cho đường tròn tâm O đường kính AB R 2. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn O tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN. a) Chứng minh tứ giác BCHK nội tiếp đường tròn. b) Chứng minh 2 AK AH R. c) Trên tia KN lấy điểm I sao cho KI KM. Chứng minh NI BK. + Cho hệ phương trình: mx y 5 2x y 2 (I). Xác định giá trị của m để hệ phương trình (I) có nghiệm duy nhất thỏa mãn: 2x + 3y = 12. + Để phương trình 2 7 2 5 0 x x m có nghiệm kép thì giá trị của m bằng?