Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Quận 11 TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Quận 11 TP HCM Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 9 năm 2019 - 2020 phòng GD&ĐT Quận 11 TP HCM Đề thi học kỳ 1 Toán lớp 9 năm 2019 - 2020 phòng GD&ĐT Quận 11 TP HCM Chào quý thầy cô và các em học sinh khối 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học kỳ 1 môn Toán lớp 9 năm 2019 - 2020 do phòng GD&ĐT Quận 11 TP HCM tổ chức. Đề thi này là cơ sở quan trọng để đánh giá và xếp loại học lực môn Toán của các em trong giai đoạn học kỳ 1 năm học. Trong đề thi, có các câu hỏi thú vị như: 1. Nhà Toán học Galilei đã phát hiện ra mối quan hệ giữa quãng đường chuyển động của vật rơi tự do và thời gian chuyển động. Em sẽ được yêu cầu tính khoảng cách vật nặng cách mặt đất sau 3 giây và thời gian vật nặng rơi đến khi chạm mặt đất. 2. Ngoài ra, các em cũng sẽ phải giải các bài toán về hàm số bậc nhất, vẽ đồ thị hàm số, tính toán công suất nhiệt hao phí khi đun nước trong thời gian nhất định. 3. Cuối cùng, đề thi còn đưa ra bài toán về đường tròn và các khái niệm liên quan, yêu cầu các em chứng minh các đẳng thức, tính độ dài các cạnh và đưa ra lập luận phù hợp. Đề thi học kỳ 1 môn Toán lớp 9 năm 2019 - 2020 phòng GD&ĐT Quận 11 TP HCM đem đến cho các em cơ hội thách thức bản thân và phát triển kỹ năng giải quyết vấn đề. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 9 năm học 2020 - 2021 phòng GDĐT Bắc Từ Liêm - Hà Nội
Đề thi HK1 Toán 9 năm học 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 9 năm học 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Chiều cao của một cây xanh là 3m (coi mặt đất là mặt phẳng và cây mọc vuông góc với mặt đất). Ở một thời điểm trong ngày, mặt trời chiếu tạo thành bóng của cây trên mặt đất dài 2m. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu? (làm tròn số đo góc tới độ). + Cho hàm số bậc nhất y = (2m + 1)x – 2 (với m là tham số và m khác -1/2) có đồ thị là đường thẳng (d). 1) Vẽ đồ thị hàm số với m = 0. 2) Tìm m để đường thẳng (d) song song với đường thẳng y = 4x + 3. 3) Tìm m để đường thẳng (d) cắt các trục tọa độ tạo thành tam giác có diện tích bằng 1 (đơn vị diện tích). + Cho đường tròn (O;R), đường kính AB. Qua B kẻ tiếp tuyến Bx với đường tròn (O). Trên tia Ax lấy điểm M sao cho MA cắt đường tròn (O) tại điểm thứ hai là D. Gọi E là trung điểm của đoạn thẳng AD. 1) Chứng minh AD.AM = 4R^2. 2) Chứng minh bốn điểm M, E, C, B cùng thuộc một đường tròn. 3) Kẻ BH vuông góc với OM tại H, BH cắt đường tròn (O) tại C. Chứng minh MC là tiếp tuyến của đường tròn (O). 4) Tia AH cắt đường tròn (O) tại Q. Chứng minh BQ đi qua trung điểm của HM.
Đề thi cuối học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 2 - TP HCM
Đề thi cuối học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 2, thành phố Hồ Chí Minh được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 2 – TP HCM : + Nhà máy A sản xuất một lô áo giá vốn là 50.000.000 (đồng) và giá bán mỗi chiếc áo là 50.000 (đồng). Khi đó gọi y (đồng) là số tiền lời (hoặc lỗ) của nhà máy thu được khi bán x cái áo. a) Hãy viết công thức biểu diễn y theo x. b) Hỏi nhà máy A phải bán bao nhiêu cái áo để đạt được số tiền lời là 10.000.000 (đồng)? + Một sản phẩm có giá là 60.000 đồng. Khi có đợt giảm giá, mỗi ngày số lượng sản phẩm bán ra tăng 50% nên doanh thu cũng tăng 25%. Hỏi giá bán một sản phẩm khi giảm giá là bao nhiêu? + Một cái tháp cao 17m được dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ sông bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu cũng bên bờ sông ấy người ta nhìn thấy đỉnh tháp với góc nâng 30°. Tính khoảng cách giữa hai điểm sau hai lần quan sát (làm tròn kết quả cuối cùng đến mét).
Đề thi HK1 Toán 9 năm 2020 - 2021 phòng GDĐT Nam Từ Liêm - Hà Nội
Thứ Hai ngày 28 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kì 1 môn Toán lớp 9 năm học 2020 – 2021. Đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Nam Từ Liêm – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Cho hàm số bậc nhất y = (m – 1)x + 4 có đồ thị là đường thẳng (d). 1. Tìm m để đường thẳng (d) đi qua điểm C(2;8). Vẽ đồ thị hàm số ứng với m vừa tìm được. 2. Tìm m để đường thẳng (d) song song với đồ thị hàm số y = 3 – 2x. 3. Tìm m để đường thẳng (d) tạo với trục tung và trục hoành một tam giác có diện tích bằng 4 (đơn vị diện tích). + Một bể bơi hình chữ nhật có chiều dài đường chéo là 25m. Góc tạo bởi đường chéo và chiều rộng là 68 độ. Hãy tính chiều dài và chiều rộng của bể bơi (làm tròn đến số thập phân thứ nhất). + Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB và AC tới (O) (B, C là tiếp điểm). Gọi H là giao điểm của AO và BC. a. Chứng minh bốn điểm A; B; O; C cùng thuộc đường tròn. b. Kẻ đường kính CD của (O); DA cắt (O) tại E (E khác D). Chứng minh OA vuông góc BC và AE.AD = AH.AO. c. Gọi M là trung điểm của AC, BC cắt ME tại N; DE cắt BC tại I. Chứng minh ME là tiếp tuyến của (O) và OI vuông góc AN.
Đề thi HK1 Toán 9 năm 2020 - 2021 phòng GDĐT TP Đà Lạt - Lâm Đồng
Đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT TP Đà Lạt – Lâm Đồng được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 13 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT TP Đà Lạt – Lâm Đồng : + Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O. Chứng minh: BC.BD = 4R2. + Cho đường thẳng (d1): y = 2x – (m + 6) với m là tham số. Tìm giá trị của m để hai đường thẳng (d1) và (d2): y = 3x – 2 cắt nhau tại một điểm trên đường thẳng (d3): y = x + 1. + Cho nửa đường tròn tâm O đường kính BC. Gọi A là một điểm nằm trên nửa đường tròn (O), A khác B, A khác C. Gọi H là hình chiếu vuông góc của A trên BC, D là điểm đối xứng với B qua A, I là trung điểm AH, J là trung điểm của DH. Gọi E là giao điểm của HD và CI. Cho biết tam giác AJH đồng dạng tam giác HIC. Chứng minh: 2AE < AB.