Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thiệu Hóa Thanh Hóa

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thiệu Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Thiệu Hóa Thanh Hóa Đề thi học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Thiệu Hóa Thanh Hóa Chào mừng đến với đề thi học sinh giỏi môn Toán lớp 8 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 28 tháng 03 năm 2022. Trích dẫn một số câu hỏi trong đề thi: 1. Tìm số nguyên x, y thỏa mãn: $22^x \cdot 3^y + 2^{x+y} + 2^{2x} \cdot y = 70$. 2. Liệt kê tất cả các số chính phương gồm 4 chữ số sao cho khi ta thêm 1 vào hàng nghìn, 3 vào hàng trăm, 5 vào hàng chục và 3 vào hàng đơn vị, ta vẫn được một số chính phương. 3. Cho đoạn thẳng AB cố định với O là trung điểm. Xây dựng các điểm và chứng minh các tính chất: CD = EO; KI đi qua trung điểm của BD; tứ giác JNOI là hình bình hành, với C di chuyển sao cho AC = AO. Tính giá trị nhỏ nhất của $NI^2 + OJ^2$. Đây là một bài thi đầy thách thức và hấp dẫn dành cho các em học sinh lớp 8. Chúc các em tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.