Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán logarit qua nhiều góc nhìn

Tài liệu gồm có 90 trang được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, tuyển chọn 60 bài toán trắc nghiệm logarit có đáp án và lời giải chi tiết. Đây không phải là tổng hợp những bài toán logarit hay nhất mà nó bao gồm những bài toán logarit mang đến những tư duy hay nhất. Lời giải trong tài liệu ít nhiều có đôi chỗ không đúng với thuần tự luận hay những lí thuyết SGK vì vậy các bạn chỉ nên đọc tham khảo là chính. Trích dẫn tài liệu bài toán logarit qua nhiều góc nhìn: + Trong các nghiệm (x;y) thỏa mãn bất phương trình log x^2 + 2y^2 (2x + y) ≥ 1. Giá trị lớn nhất của biểu thức T = 2x + y bằng? + Cho các số thực dương a, b, c thỏa mãn 5log22a + 16log22b + 27log22c = 1. Giá trị lớn nhất của S = ∑log2a.log2b bằng? [ads] + Cho phương trình √(1 – m + log2x) + √(4m + 2 – log2x) = m với m là tham số thực. Biết m = m0 là giá trị để phương trình trên có đúng một nghiệm thực. Khẳng định nào dưới đây đúng? + Lấy đạo hàm cấp 2019 của hàm số f(x) = x^2.e^x ta được hàm số g(x), tính tổng các nghiệm của phương trình g(x) = 0. + Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để tồn tại duy nhất cặp số (x;y) thỏa mãn log2(x + y) + logm(x – y) = 1 và x^2 – y^2 = m.

Nguồn: toanmath.com

Đọc Sách

Các phương pháp giải PT - BPT - HPT Mũ và Logarit - Nguyễn Trung Kiên
Tài liệu Các phương pháp giải phương trình – bất phương trình – hệ phương trình Mũ và Logarit của thầy Nguyễn Trung Kiên gồm 54 trang. Tài liệu tóm gọn các phương pháp giải và một số ví dụ mẫu của PT-BPT-HPT Mũ và Logarit.
Chuyên đề phương trình mũ và logarit - Nguyễn Thành Long
Tài liệu chuyên đề phương trình mũ và logarit của tác giả Nguyễn Thành Long gồm 179 trang, gồm các dạng bài toán phương trình – bất phương trình – hệ phương trình – phương trình chứa tham số mũ và logarit có hướng dẫn và lời giải chi tiết. Các bài toán được phân thành nhiều dạng khác nhau dựa vào phương pháp giải.
Phương trình Mũ và Logarit - Đặng Thành Nam
Phương trình Mũ và Logarit – Đặng Thành Nam.
Chuyên đề hàm số Mũ và Logarit - Bùi Quỹ
Chuyên đề hàm số Mũ và Logarit – Bùi Quỹ