Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0)

Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0)A. Các kiến thức cần nhớB. Bài tập áp dụng Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0) Trong tài liệu này, bạn sẽ được giới thiệu đến kiến thức cơ bản về hàm số và đồ thị hàm số y = ax^2 (a khác 0) trong chương trình môn Toán lớp 9. Tài liệu bao gồm 20 trang, bao gồm các kiến thức cần nhớ, các dạng toán và bài tập thực hành có đáp án và lời giải chi tiết. Để hiểu rõ hơn về chủ đề này, hãy cùng điểm qua một số điểm chính sau: A. Các kiến thức cần nhớ Tính chất của hàm số y = ax^2 (a khác 0): Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Đồ thị của hàm số y = ax^2 (a khác 0): Đồ thị của hàm số y = ax^2 (a khác 0) là một parabol với đỉnh tại gốc tọa độ O. Vị trí của đồ thị so với trục hoành phụ thuộc vào giá trị của a. B. Bài tập áp dụng Tài liệu cung cấp nhiều bài tập áp dụng để bạn thực hành và mở rộng kiến thức: Tính giá trị của hàm số tại một điểm cho trước. Xét tính đồng biến, nghịch biến của hàm số. Vẽ đồ thị hàm số y = ax^2 (a khác 0). Giải bài toán liên quan đến sự tương giao giữa đồ thị và đường thẳng. Ngoài ra, tài liệu còn kèm theo một bộ bài tập về nhà để bạn tự rèn luyện và nắm vững kiến thức. Hãy cẩn thận và kiên nhẫn khi làm bài tập, sẽ không có gì là khó khăn nếu bạn cố gắng. Chúc bạn học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đường kính và dây cung của đường tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường kính và dây cung của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 2 và bài số 3. A. TÓM TẮT LÝ THUYẾT Đường kính và dây của đường tròn: Trong các dây của đường tròn, dây lớn nhất là đường kính. Quan hệ vuông góc giữa đường kính và dây: + Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. Liên hệ khoảng cách từ tâm đến dây: Trong một đường tròn: + Hai dây bằng nhau thì cách đều tâm. + Hai dây cách đều tâm thì bằng nhau. Trong hai dây của một đường tròn: + Dây nào lớn hơn thì dây đó gần tâm hơn. + Dây nào gần tâm hơn thì dây đó lớn hơn. B. CÁC DẠNG BÀI TỰ LUẬN MINH HỌA Dạng 1: Các bài toán liên quan đến tính toán trong đường tròn. Dạng 2: Chứng minh hai đoạn thẳng không bằng nhau. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề sự xác định đường tròn tính chất đối xứng của đường tròn
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề sự xác định đường tròn – tính chất đối xứng của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ + Đường tròn. + Vị trí tương đối. + Cách xác định đường tròn. + Tính chất đối xứng. + Độ dài đường tròn và diện tích hình tròn. + Đường kính và dây của đường tròn. + Liên hệ khoảng cách từ tâm đến dây. B. CÁC DẠNG BÀI CƠ BẢN Dạng 1: Tính độ dài đường tròn và diện tích hình tròn. Dạng 2: Chứng minh các điểm cùng thuộc một đường tròn. Dạng 3: Đường kính và dây của đường tròn. Liên hệ khoảng cách từ tâm đến dây. C. CÁC BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Chứng minh nhiều điểm cùng thuộc một đường tròn. + Chứng minh một điểm thuộc một đường tròn cố định. + Dựng đường tròn. + Các dạng toán khác. D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ