Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 3 năm 2022 trường THCS Ái Mộ Hà Nội

Nội dung Đề thi thử Toán vào lần 3 năm 2022 trường THCS Ái Mộ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 3 năm 2022 trường THCS Ái Mộ Hà Nội Đề thi thử Toán vào lần 3 năm 2022 trường THCS Ái Mộ Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến bạn đề thi thử môn Toán ôn tập tuyển sinh vào lớp 10 THPT lần 3 năm 2022 của trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội. Đề thi sẽ diễn ra vào thứ Năm ngày 26 tháng 05 năm 2022. Dưới đây là một số câu hỏi từ đề thi thử Toán vào lớp 10 lần 3 năm 2022 trường THCS Ái Mộ – Hà Nội: + Giải các bài toán có yếu tố thực tế: Một quả bóng World Cup xem như một hình cầu có đường kính là 17cm. Hãy tính diện tích mặt cầu và thể tích hình cầu (lấy giá trị pi = 3,14). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một sân bóng đá theo chuẩn FIFA là sân hình chữ nhật, chiều dài hơn chiều rộng 37m và có diện tích 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá (hình vẽ minh họa). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (2m + 1)x – 2m + 4 và Parabol (P): y = x² (với x là ẩn và m là tham số). a) Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. b) Gọi H và K lần lượt là các hình chiếu vuông góc của A và B trên trục hoành. Hãy tìm giá trị tham số m để đoạn thẳng HK có độ dài bằng 4. Hy vọng các em sẽ hoàn thành tốt đề thi thử này và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.
Đề thi vào 10 môn Toán (chung) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dùng chung cho tất cả các thí sinh) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chung) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Tìm m, n để đường thẳng (d): y = mx + n đi qua điểm A(2;3) và cắt đường thẳng y = x – 2 tại điểm có hoành độ bằng −1. + Cho phương trình x2 − 2(m + 1)x + m2 + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 6. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 6×12 + 6x1x2 = (m + 1)(x13 + x23 – 12×2). + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C không trùng với B sao cho CA > CB. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên AB, E là giao điểm của hai đường thẳng OD và AC. 1. Chứng minh tứ giác OADC nội tiếp đường tròn. 2. Gọi F là giao điểm của hai đường thẳng CD và AB. Chứng minh 2BCF + CFB = 90. 3. Gọi M là giao điểm của hai đường thẳng BD và CH. Chứng minh OC/EM – EO/ED = 1.