Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp

Chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu là chủ đề đầu tiên mà các em học sinh được học khi tìm hiểu chương trình Hình học 12 chương 3, đây là nội dung căn bản mà các em cần nắm vững trước khi tìm hiểu những kiến thức cao hơn. Trong đề thi THPT Quốc gia môn Toán, các câu hỏi và bài tập trắc nghiệm thuộc chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu được bắt gặp thường xuyên, các bài toán trải rộng ở nhiều mức độ nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. Và để giúp các em có tài liệu tham khảo, rèn luyện, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp. Tài liệu gồm 46 trang với các câu hỏi và bài toán trắc nghiệm hệ trục tọa độ Oxyz và phương trình mặt cầu có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp: PHẦN A . CÂU HỎI Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxyz (Trang 1). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 8). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 8). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 9). Dạng toán 3. Mặt cầu (Trang 10). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 10). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 13). + Dạng toán 3.3 Một số bài toán khác (Trang 16). Dạng toán 4. Bài toán cực trị (Trang 17). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxy (Trang 19). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 27). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 27). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 28). Dạng toán 3. Mặt cầu (Trang 31). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 31). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 34). + Dạng toán 3.3 Một số bài toán khác (Trang 37). Dạng toán 4. Bài toán cực trị (Trang 42 ).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Vũ Minh (Tập 2)
Chuyên đề phương pháp tọa độ trong không gian (Tập 2) do thầy Nguyễn Vũ Minh biên soạn gồm 84 trang bao gồm tổng hợp lý thuyết, phân dạng toán và tuyển chọn các bài toán thuộc chủ đề Hình học 12 chương 3. Nội dung tài liệu gồm các phần : Phần 5. Phương trình đường thẳng Phần 6. Vị trí tương đối đường thẳng và mặt phẳng Phần 7. Góc Phần 8. Bài toán hình chiếu Phần 9. Vị trí tương đối của mặt phẳng và mặt cầu đường tròn trong không gian Phần 10. Bài tập tự luyện phương pháp tọa độ trong không gian (có đáp án) Xem thêm :  Chuyên đề phương pháp tọa độ trong không gian – Nguyễn Vũ Minh (Tập 1)
Các dạng toán phương trình đường thẳng Oxyz - Nguyễn Bảo Vương
Tài liệu gồm 28 trang do thầy Nguyễn Bảo Vương biên soạn tuyển tập các dạng toán phương trình đường thẳng trong hệ trục tọa độ Oxyz, trong mỗi dạng toán đều được trình bày chi tiết các bước giải toán, ví dụ minh họa và các bài tập trắc nghiệm tự luyện. Các dạng toán phương trình đường thẳng Oxyz được đề cập trong tài liệu: + Dạng 1. Phương trình đường thẳng + Dạng 2. Viết phương trình đường thẳng + Dạng 3. Vị trí tương đối của đường thẳng với mặt phẳng + Dạng 4. Vị trí tương đối của hai đường thẳng + Dạng 5. Vị trí tương đối của mặt cầu và đường thẳng Xem thêm : + Bài giảng hệ tọa độ trong không gian – Nguyễn Bảo Vương + Các dạng toán phương trình mặt phẳng – Nguyễn Bảo Vương
Các dạng toán phương trình mặt phẳng - Nguyễn Bảo Vương
Tài liệu gồm 68 trang được biên soạn bởi thầy Nguyễn Bảo Vương bao gồm tóm tắt lý thuyết, các dạng toán, hướng dẫn giải và bài tập về chủ đề phương trình mặt phẳng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian, các bài toán trong tài liệu có đáp án và lời giải chi tiết. Các dạng toán về phương trình mặt phẳng và cách giải : Dạng 1 . Phương trình mặt phẳng Phương pháp : Phương trình: Ax + By + Cz + D = 0 là phương trình của một mặt phẳng khi và chỉ khi A2 + B2 + C2 > 0. Chú ý : Đi kèm với họ mặt phẳng (Pm) thường có thêm các câu hỏi phụ: + Câu hỏi 1: Chứng minh rằng họ mặt phẳng (Pm) luôn đi qua một điểm cố định. + Câu hỏi 2: Cho điểm M có tính chất K, biện luận theo vị trí của M số mặt phẳng của họ (Pm) đi qua M. + Câu hỏi 3: Chứng minh rằng họ mặt phẳng (Pm) luôn chứa một đường thẳng cố định. Dạng 2 . Viết phương trình mặt phẳng Phương pháp : Để viết phương trình mặt phẳng (P) ta có thể lựa chọn một trong các cách sau: Cách 1: Thực hiện theo các bước: + Bước 1. Xác định điểm M0(x0; y0; z0) ∈ (P) và vectơ pháp tuyến (VTPT) n(n1; n2; n3) của (P). + Bước 2. Khi đó, phương trình mặt phẳng (P): n1(x − x0) + n2(y − y0) + n3(z − z0) = 0. Cách 2: Sử dụng phương pháp quỹ tích. [ads] Chú ý : Chúng ta có các kết quả: 1. Mặt phẳng (P) đi qua điểm M(x0; y0; z0), luôn có dạng: (P): A(x − x0) + B(y − y0) + C(z − z0) = 0. 2. Mặt phẳng (P) có vectơ pháp tuyến (VTPT) n(n1; n2; n3), luôn có dạng: (P): n1x + n2y + n3z + D = 0. Để xác định (P), ta cần đi xác định D. 3. Mặt phẳng (P) song song với (Q): Ax + By + Cz + D = 0, luôn có dạng (P): Ax + By + Cz + E = 0. Để xác định (P), ta cần đi xác định E. 4. Phương trình mặt phẳng theo các đoạn chắn, đó là mặt phẳng (P) đi qua ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) có phương trình (P): x/a + y/b + z/c = 1. 5. Với phương trình mặt phẳng (P) đi qua ba điểm không thẳng hàng M, N, P chúng ta có thể lựa chọn một trong hai cách sau: + Cách 1: Gọi n là vectơ pháp tuyến (VTPT) của mặt phẳng (P), ta có: n = [MN, MP]. Khi đó, phương trình mặt phẳng (P) đi qua M và có vectơ pháp tuyến (VTPT) là n. + Cách 2: Giả sử mặt phẳng (P) có phương trình: Ax + By + Cz + D = 0, (1) với A2 + B2 + C2 > 0. Vì M, N, P thuộc mặt phẳng (P) nên ta có hệ ba phương trình với bốn ẩn A, B, C, D. Biểu diễn ba ẩn theo một ẩn còn lại, rồi thay vào (1) chúng ta nhận được phương trình mặt phẳng (P). Dạng 3 . Vị trí tương đối của hai mặt phẳng Phương pháp : Sử dụng kiến thức trong phần vị trí tương đối của hai mặt phẳng. Dạng 4 . Vị trí tương đối của mặt cầu với mặt phẳng Phương pháp : Ta thực hiện theo các bước: Bước 1. Xác định tâm I và tính bán kính R của mặt cầu (S). Xác định d = d(I, (P)). Bước 2. So sánh d với R để đưa ra kết luận: + Nếu d > R ⇔ (P) ∩ (S) = ∅. + Nếu d = R ⇔ (P) tiếp xúc với (S) tại H. + Nếu d < R ⇔ (P) ∩ (S) = (C) là một đường tròn nằm trong mặt phẳng (P).
Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương
Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.